AQA Maths FP1

Mark Scheme Pack

2006-2014

ASSESSMENT and
OUALIFICATIONS
ALLIANCE

General Certificate of Education

Mathematics 6360

MFP1 Further Pure 1

Mark Scheme
 2006 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

M	mark is for method	
m or dM	mark is dependent on one or more M marks and is for method	
A	mark is dependent on M or m marks and is for accuracy	
B	mark is independent of M or m marks and is for method and accuracy	
E	mark is for explanation	
Jor ft or F	follow through from previous	
	incorrect result	
CAO	correct answer only	MC

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Totals	Comments
1(a) (b)	$f(0.5)=-0.875, f(1)=1$ Change of sign, so root between Complete line interpolation method Estimated root $=\frac{11}{15} \approx 0.73$	$\begin{gathered} \hline \text { B1 } \\ \text { E1 } \\ \text { M2,1 } \\ \text { A1 } \end{gathered}$	2 3	M1 for partially correct method Allow $\frac{11}{15}$ as answer
	Total		5	
$2(a)(i)$ (ii) (b)	$\begin{aligned} & \int x^{-\frac{1}{2}} \mathrm{~d} x=2 x^{\frac{1}{2}}(+c) \\ & \int_{0}^{9} \frac{1}{\sqrt{x}} \mathrm{~d} x=6 \\ & \int x^{-\frac{1}{2}} \mathrm{~d} x=-2 x^{-\frac{1}{2}}(+c) \\ & x^{-\frac{1}{2}} \rightarrow \infty \text { as } x \rightarrow 0, \text { so no value } \\ & \text { Denominator } \rightarrow 0 \text { as } x \rightarrow 0 \end{aligned}$	M1A1 A1 \checkmark M1A1 E1 E1	$\begin{aligned} & 3 \\ & 1 \\ & \hline \end{aligned}$	M1 for $k x^{\frac{1}{2}}$ ft wrong coeff of $x^{\frac{1}{2}}$ M1 for $k x^{-\frac{1}{2}}$ 'Tending to infinity’ clearly implied
	Total		7	
3	One solution is $x=10^{\circ}$ Use of $\sin 130^{\circ}=\sin 50^{\circ}$ Second solution is $x=30^{\circ}$ Introduction of $90 n^{\circ}$, or $360 n^{\circ}$ or $180 n^{\circ}$ GS $(10+90 n)^{\circ},(30+90 n)^{\circ}$	$\begin{gathered} \hline \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \checkmark \end{gathered}$	5	PI by general formula OE OE Or $\pi n / 2$ or $2 \pi n$ or πn OE ; ft one numerical error or omission of 2nd soln
	Total		5	
4(a) (b) (c)	Asymptotes $x=1, y=6$ Curve (correct general shape) Curve passing through origin Both branches approaching $x=1$ Both branches approaching $y=6$ Correct method Critical values ± 1 Solution set $-1<x<1$	$\begin{gathered} \hline \text { B1B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \text { A1 } \\ \text { M1 } \\ \text { B1B1 } \\ \text { A1 } \checkmark \end{gathered}$	2	SC Only one branch: B1 for origin B1 for approaching both asymptotes (Max 2/4) From graph or calculation ft one error in CV ; NMS 4/4 after a good graph
	Total		10	
5(a)(i) (ii) (b)(i) (ii) (iii)	Full expansion of product Use of $\mathrm{i}^{2}=-1$ $\begin{aligned} & (2+\sqrt{5} \mathrm{i})(\sqrt{5}-\mathrm{i})=3 \sqrt{5}+3 \mathrm{i} \\ & z^{*}=x-\mathrm{i} y(=\sqrt{5}+\mathrm{i}) \end{aligned}$ Hence result Other root is $\sqrt{5}+\mathrm{i}$ Sum of roots is $2 \sqrt{5}$ Product is 6 $p=-2 \sqrt{5}, q=6$	M1 m1 A1 M1 A1 B1 B1 M1A1 B1 B1 \checkmark	3 $\begin{aligned} & 2 \\ & 1 \end{aligned}$ 3 2	$\sqrt{5} \sqrt{5}=5$ must be used - Accept not fully simplified Convincingly shown (AG) ft wrong answers in (ii)
	Total		11	

MFP1

Q	Solution	Marks	Totals	Comments
6(a) (b) (c) (d)	X values 1.23, 2.18 Y values $0.70,1.48$ $\lg y=\lg k+\lg x^{n}$ $\lg x^{n}=n \lg x$ So $Y=n X+\lg k$ Four points plotted Good straight line drawn Method for gradient Estimate for n	$\begin{gathered} \text { B3,2,1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \text { B2,1 } \checkmark \\ \text { B1 } \checkmark \\ \text { M1 } \\ \text { A1 } \end{gathered}$	3 3 3	-1 for each error B1 if one error here; ft wrong values in (a) ft incorrect points (approx collinear) Allow AWRT 0.75-0.78; ft grad of candidate's graph
	Total		11	
7(a)(i) (ii) (iii) (b)(i) (ii)	$\begin{aligned} & \text { Reflection } \ldots \\ & \ldots \text { in } y=-x \\ & \mathbf{A}^{2}=\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right] \\ & \mathbf{A}^{2}=\mathbf{I} \text { or geometrical reasoning } \\ & \mathbf{B}^{2}=\left[\begin{array}{ll} 1 & 2 \\ 0 & 1 \end{array}\right] \\ & \mathbf{B}^{2}-\mathbf{A}^{2}=\left[\begin{array}{ll} 0 & 2 \\ 0 & 0 \end{array}\right] \\ & (\mathbf{B}+\mathbf{A})(\mathbf{B}-\mathbf{A})=\left[\begin{array}{cc} 1 & 0 \\ -1 & 1 \end{array}\right]\left[\begin{array}{ll} 1 & 2 \\ 1 & 1 \end{array}\right] \\ & \ldots=\left[\begin{array}{cc} 1 & 2 \\ 0 & -1 \end{array}\right] \end{aligned}$	M1 A1 M1A1 E1 M1A1 A1 \checkmark B1 M1 A1	$\begin{aligned} & 2 \\ & 2 \end{aligned}$ 1 3 3	OE M1A0 for three correct entries M1A0 for three correct entries ft errors, dependent on both M marks ft one error; M1A0 for three correct (ft) entries
	Total		11	
$\begin{array}{r} \text { 8(a) } \\ \text { (b)(i) } \\ \text { (ii) } \\ \text { (c)(i) } \end{array}$ (ii) (iii) (iv)	Good attempt at sketch Correct at origin y replaced by $y-2$ Equation is $(y-2)^{2}=12 x$ Equation is $x^{2}=12 y$ $(x+c)^{2}=x^{2}+2 c x+c^{2}$ $\ldots=12 x$ Hence result Tangent if $(2 c-12)^{2}-4 c^{2}=0$ $\text { ie if }-48 c+144=0 \text { so } c=3$ $x^{2}-6 x+9=0$ $x=3, y=6$ $c=4 \Rightarrow \text { discriminant }=-48<0$ So line does not intersect curve	M1 A1 B1 B1 B1 B1 M1 A1 M1 A1 M1 A1 M1A1 A1		ft $y+2$ for $y-2$ convincingly shown (AG) OE
	Total		15	
	TOTAL		75	

ASSESSMENT and
OUALIFICATIONS
ALLIANCE

General Certificate of Education

Mathematics 6360

MFP1 Further Pure 1

Mark Scheme

2006 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

M	mark is for method	
m or dM	mark is dependent on one or more M marks and is for method	
A	mark is dependent on M or m marks and is for accuracy	
B	mark is independent of M or m marks and is for method and accuracy	
E	mark is for explanation	
for ft or F	follow through from previous incorrect result	MC
CAO	correct answer only	MR

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP1

Q	Solution	Marks	Total	Comments
1(a) (b)(i) (ii) (c)	$\begin{aligned} & \alpha+\beta=2, \alpha \beta=\frac{2}{3} \\ & (\alpha+\beta)^{3}=\alpha^{3}+3 \alpha^{2} \beta+3 \alpha \beta^{2}+\beta^{3} \\ & \alpha^{3}+\beta^{3}=(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta) \end{aligned}$ Substitution of numerical values $\begin{aligned} & \alpha^{3}+\beta^{3}=4 \\ & \alpha^{3} \beta^{3}=\frac{8}{27} \end{aligned}$ Equation of form $p x^{2} \pm 4 p x+r=0$ Answer $27 x^{2}-108 x+8=0$	$\begin{gathered} \hline \text { B1B1 } \\ \text { B1 } \\ \text { M1 } \\ \text { m1 } \\ \text { A1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \sqrt{2} \end{gathered}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$ 3 3	SC $1 / 2$ for answers 6 and 2 Accept unsimplified convincingly shown AG ft wrong value for $\alpha^{3} \beta^{3}$
	Total		9	
2	$\begin{aligned} & \text { 1st increment is } 0.2 \lg 2 \ldots \\ & \ldots \approx 0.06021 \\ & x=2.2 \Rightarrow y \approx 3.06021 \\ & \text { 2nd increment is } 0.2 \lg 2.2 \\ & \ldots \approx 0.06848 \\ & x=2.4 \Rightarrow y \approx 3.12869 \approx 3.129 \end{aligned}$	M1 A1 A1 \checkmark m1 A1 A1 \checkmark	6	or $0.2 \lg 2.1$ or $0.2 \lg 2.2$ PI PI; ft numerical error consistent with first one PI ft numerical error
	Total		6	
3	$\Sigma\left(r^{2}-r\right)=\Sigma r^{2}-\Sigma r$ At least one linear factor found $\begin{aligned} & \Sigma\left(r^{2}-r\right)=\frac{1}{6} n(n+1)(2 n+1-3) \\ & \ldots=\frac{1}{3} n(n+1)(n-1) \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~m} 1 \\ & \mathrm{~m} 1 \\ & \mathrm{~A} 1 \end{aligned}$	4	OE
	Total		4	
4	$\cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}$ stated or used Appropriate use of \pm Introduction of $2 n \pi$ Division by 3 $x= \pm \frac{\pi}{18}+\frac{2}{3} n \pi$	B1 B1 M1 M1 A1	5	Condone decimals and/or degrees until final mark Of $\alpha+k n \pi$ or $\pm \alpha+k n \pi$
	Total		5	
5(a)(i) (ii) (b) (c)	$\begin{aligned} & \mathbf{M}^{2}=\left[\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right] \\ & \mathbf{M}^{4}=\left[\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right] \end{aligned}$ Rotation (about the origin) ... through 45° clockwise Awareness of $\mathbf{M}^{8}=\mathbf{I}$ $\mathbf{M}^{2006}=\left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right]$	M1 A2,1 B1 \checkmark M1 A1 M1 m1 A1 \checkmark	3	M1 if 2 entries correct M1A1 if 3 entries correct ft error in \mathbf{M}^{2} provided no surds in \mathbf{M}^{2} OE; NMS 2/3 complete valid method ft error in \mathbf{M}^{2} as above
	Total		9	

MFP1 (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline \begin{tabular}{l}
\[
6(a)
\] \\
(b)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& (z+\mathrm{i})^{*}=x-\mathrm{i} y-\mathrm{i} \\
\& \ldots=2 \mathrm{i} x-2 y+1
\end{aligned}
\] \\
Equating R and I parts
\[
\begin{aligned}
\& x=-2 y+1,-y-1=2 x \\
\& z=-1+\mathrm{i}
\end{aligned}
\]
\end{tabular} \& \[
\begin{gathered}
\hline \text { B2 } \\
\text { M1 } \\
\text { M1 } \\
\text { A1 } \checkmark \\
\text { m1A1 } \checkmark \\
\hline
\end{gathered}
\] \& 2

5 \& $\mathrm{i}^{2}=-1$ used at some stage involving at least 5 terms in all ft one sign error in (a) ditto; allow $x=-1, y=1$

\hline \& Total \& \& 7 \&

\hline | 7(a) |
| :--- |
| (b) | \& | Stretch parallel to y axis scale-factor $\frac{1}{2}$ parallel to y axis $(x-2)^{2}-y^{2}=1$ |
| :--- |
| Translation in x direction 2 units in positive x direction | \& \[

$$
\begin{gathered}
\hline \text { B1 } \\
\text { B1 } \\
\text { M1A1 } \\
\text { A1 } \\
\text { A1 } \\
\hline
\end{gathered}
$$

\] \& | 2 |
| :--- |
| 4 | \&

\hline \& Total \& \& 6 \&

\hline | 8(a)(i) |
| :--- |
| (ii) |
| (b)(i) |
| (ii) |
| (c) | \& \[

$$
\begin{aligned}
& (1+h)^{3}=1+3 h+3 h^{2}+h^{3} \\
& \mathrm{f}(1+h)=1+5 h+4 h^{2}+h^{3} \\
& \mathrm{f}(1+h)-\mathrm{f}(1)=5 h+4 h^{2}+h^{3} \\
& \text { Dividing by } h \\
& \mathrm{f}^{3}(1)=5 \\
& x^{2}(x+1)=1, \text { hence result } \\
& x_{2}=1-\frac{1}{5}=\frac{4}{5} \\
& \text { Area }=\int_{1}^{\infty} x^{-2} \mathrm{~d} x \\
& \ldots=\left[-x^{-1}\right]_{1}^{\infty} \\
& \ldots=0--1=1
\end{aligned}
$$
\] \& B1

M1A1 \checkmark
A1 \checkmark
M1
A1 \checkmark
B1
M1A1 \checkmark
A1 \checkmark
M1
M1

A1 \& \[
$$
\begin{aligned}
& 2 \\
& 1 \\
& 3
\end{aligned}
$$

\] \& | PI; ft wrong coefficients ft numerical errors |
| :--- |
| ft numerical errors convincingly shown (AG) ft c 's value of $\mathrm{f}^{\prime}(1)$ |
| Ignore limits here |

\hline \& Total \& \& 13 \&

\hline | 9(a)(i) |
| :--- |
| (ii) |
| (b)(i) |
| (ii) |
| (c) | \& \[

$$
\begin{aligned}
& \text { Intersections at }(-1,0),(3,0) \\
& \text { Asymptotes } x=0, x=2, y=1 \\
& y=k \Rightarrow k x^{2}-2 k x=x^{2}-2 x-3 \\
& \ldots \Rightarrow(k-1) x^{2}+(-2 k+2) x+3=0 \\
& \Delta=4(k-1)(k-4), \text { hence result } \\
& y=4 \text { at } \operatorname{SP} \\
& 3 x^{2}-6 x+3=0, \text { so } x=1 \\
& \text { Curve with three branches } \\
& \text { Middle branch correct } \\
& \text { Other two branches correct }
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
\hline \text { B1B1 } \\
\text { B1 } \times 3 \\
\text { M1A1 } \\
\text { A1 } \\
\text { m1A1 } \\
\text { B1 } \\
\text { M1A1 } \\
\text { B1 } \\
\text { B1 } \\
\text { B1 } \\
\hline
\end{gathered}
$$

\] \& 5 \& | Allow $x=-1, x=3$ |
| :--- |
| M1 for clearing denominator ft numerical error convincingly shown (AG) |
| A0 if other point(s) given approaching vertical asymptotes Coordinates of SP not needed 3 asymptotes shown |

\hline \& Total \& \& 16 \&

\hline \& TOTAL \& \& 75 \&

\hline
\end{tabular}

General Certificate of Education

Mathematics 6360

MFP1
 Further Pure 1

Mark Scheme

2007 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk
Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

[^0]
Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
\checkmark or ft or F	follow through from previous incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
$-x$ EE	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP1

Q	Solution	Marks	Total	Comments
1(a)(i)	Roots are $\pm 4 \mathrm{i}$	M1A1	2	M1 for one correct root or two correct factors
(ii)	Roots are $1 \pm 4 \mathrm{i}$	M1A1	2	M1 for correct method
(b)(i)	$(1+x)^{3}=1+3 x+3 x^{2}+x^{3}$	M1A1	2	M1A0 if one small error
(ii)	$(1+\mathrm{i})^{3}=1+3 \mathrm{i}-3-\mathrm{i}=-2+2 \mathrm{i}$	M1A1	2	M1 if $\mathrm{i}^{2}=-1$ used
(iii)	$\begin{aligned} & (1+\mathrm{i})^{3}+2(1+\mathrm{i})-4 \mathrm{i} \\ & \ldots=(-2+2 \mathrm{i})+(2-2 \mathrm{i})=0 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	with attempt to evaluate convincingly shown (AG)
Total			10	
2(a)(i)	$\mathbf{A}+\mathbf{B}=\left[\begin{array}{cc} \sqrt{3} & 0 \\ 1 & 0 \end{array}\right]$	M1A1	2	M1A0 if 3 entries correct; Condone $\frac{2 \sqrt{3}}{2}$ for $\sqrt{3}$
(ii)		B3,2,1	3	Deduct one for each error; $\mathbf{S C B}$ B, 1 for $\mathbf{A B}$
(b)(i)	Rotation 30° anticlockwise (abt O)	M1A1	2	M1 for rotation
(ii)	Reflection in $y=\left(\tan 15^{\circ}\right) x$	M1A1	2	M1 for reflection
(iii)	Reflection in x-axis	B2F	2	$1 / 2$ for reflection in y-axis ft (M1A1) only for the SC
	Alt: Answer to (i) followed by answer to (ii)	M1A1F	(2)	M1A0 if in wrong order or if order not made clear
	Total		11	
3(a)	$\alpha+\beta=-2, \alpha \beta=\frac{3}{2}$	B1B1	2	
(b)	Use of expansion of $(\alpha+\beta)^{2}$ $\alpha^{2}+\beta^{2}=(-2)^{2}-2\left(\frac{3}{2}\right)=1$	$\begin{gathered} \mathrm{M} 1 \\ \text { m1A1 } \end{gathered}$	3	convincingly shown (AG); m1A0 if $\alpha+\beta=2$ used
(c)	$\alpha^{4}+\beta^{4}$ given in terms of $\alpha+\beta, \alpha \beta$ and/or $\alpha^{2}+\beta^{2}$	M1A1		M1A0 if num error made
	$\alpha^{4}+\beta^{4}=-\frac{7}{2}$	A1	3	OE
	Total		8	

MFP1 (cont)

MFP1 (cont)

Q	Solution	Marks	Total	Comments
7(a)	Particular solution, eg $-\frac{\pi}{6}$ or $\frac{5 \pi}{6}$	B1		Degrees or decimals penalised in 3rd mark only
	Introduction of $n \pi$ or $2 n \pi$	M1		
	GS $\quad x=-\frac{\pi}{6}+n \pi$	A1F	3	OE(accept unsimplified); ft incorrect first solution
(b)(i)	$\begin{aligned} & \mathrm{f}(0.05) \approx 0.54266 \\ & \mathrm{~g}(0.05) \approx 0.54268 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	either value AWRT 0.5427 both values correct to 4DP
(ii)	$\frac{\mathrm{g}(h)-\mathrm{g}(0)}{h}=\frac{\sqrt{3}}{2}-\frac{1}{4} h$	M1A1	2	M1A0 if num error made
(iii)	As $h \rightarrow 0$ this gives $\mathrm{g}^{\prime}(0)=\frac{\sqrt{3}}{2}$	A1F	1	AWRT 0.866; ft num error
	Total		8	
8(a)	$\begin{aligned} & x=10 \Rightarrow 4-\frac{y^{2}}{9}=1 \\ & \Rightarrow y^{2}=27 \\ & \Rightarrow y= \pm 3 \sqrt{3} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	PI
(b)	One branch generally correct Both branches correct Intersections at $(\pm 5,0)$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	3	Asymptotes not needed With implied asymptotes
(c)	Required tangent is $x=5$	B1F	1	ft wrong value in (b)
(d)(i)	y correctly eliminated Fractions correctly cleared $16 x^{2}-200 x+625=0$	$\begin{aligned} & \text { M1 } \\ & \text { m1 } \\ & \text { A1 } \end{aligned}$	3	convincingly shown (AG)
(ii)	$x=\frac{25}{4}$ Equal roots \Rightarrow tangency	$\begin{aligned} & \text { B1 } \\ & \text { E1 } \end{aligned}$	2	No need to mention repeated root, but B0 if other values given as well Accept 'It's a tangent'
	Total		12	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MFP1
 Further Pure 1

Mark Scheme

2007 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

[^1]Key to mark scheme and abbreviations used in marking

| M | mark is for method | |
| :--- | :--- | :--- | :--- |
| m or dM | mark is dependent on one or more M marks and is for method | |
| A | mark is dependent on M or m marks and is for accuracy | |

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP1

Q	Solution	Mark	Total	Comments
1(a) (b) (c)	$\begin{aligned} & \mathbf{M}=\left[\begin{array}{cc} 0 & -3 \\ -3 & 0 \end{array}\right] \\ & p=3 \\ & L \text { is } y=-x \\ & \mathbf{M}^{2}=\left[\begin{array}{ll} 9 & 0 \\ 0 & 9 \end{array}\right] \\ & \ldots=9 \mathbf{I} \end{aligned}$	B2,1 B1F B1 B1F B1F	2 2 2	B1 if subtracted the wrong way round ft after B1 in (a) Allow $p=-3, L$ is $y=x$ Or by geometrical reasoning; ft as before ft as before
	Total		6	
2(a) (b)	$\mathrm{f}(1.6)=-1.304, \mathrm{f}(1.8)=0.632$ Sign change, so root between $\mathrm{f}(1.7)$ considered first $\mathrm{f}(1.7)=-0.387$, so root >1.7 $\mathrm{f}(1.75)=0.109375$, so root ≈ 1.7	B1,B1 E1 M1 A1 m1A1	3 4	Allow 1 dp throughout m 1 for $\mathrm{f}(1.65)$ after error
	Total		7	
3(a) (b)	$\begin{aligned} & \text { Use of } z^{*}=x-\mathrm{i} y \\ & z-3 \mathrm{i} z^{*}=x+\mathrm{i} y-3 \mathrm{i} x-3 y \\ & \mathrm{R}=x-3 y, \mathrm{I}=-3 x+y \end{aligned}$ $x-3 y=16,-3 x+y=0$ Elimination of x or y $z=-2-6 \mathrm{i}$	$\begin{gathered} \hline \text { M1 } \\ \text { m1 } \\ \text { A1 } \\ \\ \text { M1 } \\ \text { m1 } \\ \text { A1F } \end{gathered}$	3 3	Condone sign error here Condone inclusion of i in I Allow if correct in (b) Accept $x=-2, y=-6$; $\mathrm{ft} x+3 y$ for $x-3 y$
	Total		6	
4(a) (b) (c)	$\begin{aligned} & \alpha+\beta=\frac{1}{2}, \alpha \beta=2 \\ & \frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha \beta} \\ & \ldots=\frac{\frac{1}{2}}{2}=\frac{1}{4} \end{aligned}$ Sum of roots $=1$ Product of roots $=\frac{16}{\alpha \beta}=8$ Equation is $x^{2}-x+8=0$	B1B1 M1 A1 B1F B1F B1F	2 2 3	Convincingly shown (AG) PI by term $\pm x$; ft error(s) in (a) ft wrong value of $\alpha \beta$ ft wrong sum/product; " $=0$ " needed
	Total		7	

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Totals \& Comments \\
\hline (b) \& \begin{tabular}{l}
\[
\begin{aligned}
\& \int\left(x^{\frac{1}{3}}+x^{-\frac{1}{3}}\right) \mathrm{d} x=\frac{3}{4} x^{\frac{4}{3}}+\frac{3}{2} x^{\frac{2}{3}}(+c) \\
\& \int_{0}^{1} \ldots=\left(\frac{3}{4}+\frac{3}{2}\right)-0=\frac{9}{4}
\end{aligned}
\] \\
Second term is \(x^{-\frac{4}{3}}\) \\
Integral of this is \(-3 x^{-\frac{1}{3}}\) \\
\(x^{-\frac{1}{3}} \rightarrow \infty\) as \(x \rightarrow 0\), so no value
\end{tabular} \& \begin{tabular}{l}
M1A1 \\
m1A1 \\
B1 \\
M1A1 \\
E1
\end{tabular} \& 4

4 \& | M1 for adding 1 to index at least once |
| :--- |
| Condone no mention of limiting process; m1 if "- 0 " stated or implied |
| M1 for correct index |

\hline \& Total \& \& 8 \&

\hline 9(a) \& Intersections $(\pm \sqrt{2}, 0),(0, \pm 1)$ \& B1B1 \& 2 \& Allow B1 for $(\sqrt{2}, 0),(0,1)$

\hline (b) \& Equation is $\frac{(x-k)^{2}}{2}+y^{2}=1$ \& M1A1 \& 2 \& M1 if only one small error, eg $x+k$ for $x-k$

\hline (c) \& | Correct elimination of y |
| :--- |
| Correct expansion of squares |
| Correct removal of denominator |
| Answer convincingly established | \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { M1 } \\
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$
\] \& 4 \& AG

\hline (d) \& $$
\begin{aligned}
\mathrm{Tgt} & \Rightarrow 4(k+4)^{2}-12\left(k^{2}+6\right)=0 \\
& \ldots \Rightarrow k^{2}-4 k+1=0 \\
\ldots & \Rightarrow k=2 \pm \sqrt{3}
\end{aligned}
$$ \& \[

$$
\begin{gathered}
\text { M1 } \\
\text { m1A1 } \\
\text { A1 }
\end{gathered}
$$
\] \& 4 \& OE

\hline \multirow{4}{*}{(e)} \& \& B1 \& \& Curve to left of line

\hline \& \& B2 \& 3 \& Curve to right of line

\hline \& \& \& \& Curves must touch the line in approx correct positions

\hline \& \& \& \& SC $1 / 3$ if both curves are incomplete but touch the line correctly

\hline \& Total \& \& 15 \&

\hline \& TOTAL \& \& 75 \&

\hline
\end{tabular}

General Certificate of Education

Mathematics 6360

Further Pure 1

Mark Scheme
2008 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

$\left.\begin{array}{llll}\hline \text { M } & \text { mark is for method } & \\ \hline \mathrm{m} \text { or } \mathrm{dM} & \text { mark is dependent on one or more M marks and is for method } \\ \hline \text { A } & \text { mark is dependent on M or m marks and is for accuracy }\end{array}\right]$

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP1

Q	Solution	Marks	Totals	Comments
1	$\begin{aligned} & z_{1}+4 \mathrm{i} z_{1}{ }^{*}=(2+\mathrm{i})+4 \mathrm{i}(2-\mathrm{i}) \\ & \ldots=(2+\mathrm{i})+(8 \mathrm{i}+4) \\ & \ldots=6+9 \mathrm{i}, \text { so } x=6 \text { and } y=3 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { M1 } \\ \text { M1A1 } \end{gathered}$	4	Use of conjugate Use of $\mathrm{i}^{2}=-1$ M1 for equating Real and imaginary parts
	Total		4	
2	$\begin{aligned} & 0.01\left(2^{1}\right) \text { added to value of } y \\ & \text { So } y(1.01) \approx 4.02 \\ & \text { Second increment is } 0.01\left(2^{1.01}\right) \\ & \ldots \approx 0.020139 \\ & \text { So } y(1.02) \approx 4.04014 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { m1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	5	Variations possible here PI
	Total		5	
3	Use of $\tan \frac{\pi}{4}=1$ Introduction of $n \pi$ Division of all terms by 4 Addition of $\pi / 8$ GS $x=\frac{3 \pi}{16}+\frac{n \pi}{4}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { m1 } \\ & \text { m1 } \\ & \text { A1 } \end{aligned}$	5	Degrees or decimals penalised in last mark only or $k n$ at any stage OE OE
	Total		5	
4(a) (b)	Use of formula for $\sum r^{3}$ or $\sum r$ n is a factor of the expression So is $(n+1)$ $\begin{aligned} & S_{n}=\frac{1}{4} n(n+1)\left(n^{2}+n-12\right) \\ & \ldots=\frac{1}{4} n(n+1)(n+4)(n-3) \end{aligned}$ $n=1000$ substituted into expression Conclusion convincingly shown Need $\frac{1000}{4}$ is even, hence conclusion	$\begin{gathered} \text { M1 } \\ \text { m1 } \\ \mathrm{m} 1 \\ \text { A1 } \\ \text { A1F } \\ \text { m1 } \\ \text { A1 } \end{gathered}$	2	clearly shown ditto ft wrong value for k The factor 1004 , or $1000+4$, seen not ' 2008×124749625 ' OE
	Total		7	
5(a) (b) (c)(i) (ii)	Asymptotes are $y= \pm \frac{1}{2} x$ $x=4$ substituted into equation $y^{2}=3$ so $y= \pm \sqrt{3}$ y-coords are $2 \pm \sqrt{3}$ Hyperbola is $\frac{x^{2}}{4}-(y-2)^{2}=1$ Asymptotes are $y=2 \pm \frac{1}{2} x$	$\begin{gathered} \text { M1A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { B1F } \\ \text { M1A1 } \\ \text { B1F } \end{gathered}$	2 1	OE; M1 for $y= \pm m x$ Allow NMS ft wrong answer to (b) M1A0 if $y+2$ used ft wrong gradients in (a)
	Total		8	
6(a)(i) (ii) (b)(i) (ii) (c)	$\begin{aligned} & \mathbf{M}^{2}=\left[\begin{array}{cc} 12 & 0 \\ 0 & 12 \end{array}\right] \\ & =12 \mathbf{I} \\ & q \cos 60^{\circ}=\frac{1}{2} q=\sqrt{3} \Rightarrow q=2 \sqrt{3} \\ & \text { Other entries verified } \\ & \text { SF }=q=2 \sqrt{3} \\ & \text { Equation is } y=x \tan 30^{\circ} \\ & \mathbf{M}^{4}=144 \mathbf{I} \\ & \mathbf{M}^{4} \text { gives enlargement SF } 144 \\ & \hline \end{aligned}$	$\begin{gathered} \text { M1A1 } \\ \text { A1F } \\ \text { M1A1 } \\ \text { E1 } \\ \text { B1F } \\ \text { B1 } \\ \text { B1F } \\ \text { B1F } \\ \hline \end{gathered}$	3 1 1 2	M1 if zeroes appear in the right places ft provided of right form OE SC $q=2 \sqrt{3}$ NMS $1 / 3$ surd for $\sin 60^{\circ}$ needed ft wrong value for q PI; ft wrong value in (a)(i) ft if c's $\mathbf{M}^{4}=k \mathbf{I}$
	Total		10	

MFP1 (cont)

General Certificate of Education

Mathematics 6360

Further Pure 1

Mark Scheme

2008 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

[^2]Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
\checkmark or ft or F	follow through from previous incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
-x EE	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP1

Q	Solution	Marks	Total	Comments
1(a)	$\alpha+\beta=-1, \alpha \beta=5$	B1B1	2	
(b)	$\begin{aligned} & \alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta \\ & \ldots=1-10=-9 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1F } \end{aligned}$	2	with numbers substituted ft sign error(s) in (a)
(c)	$\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}$	M1		
	$\ldots=-\frac{9}{5}$	A1	2	$\mathrm{AG}: \mathrm{A} 0$ if $\alpha+\beta=1$ used
(d)	Product of new roots is 1 Eqn is $5 x^{2}+9 x+5=0$	$\begin{gathered} \text { B1 } \\ \text { B1F } \\ \hline \end{gathered}$	2	PI by constant term 1 or 5 ft wrong value for product
	Total		8	
2(a)	Use of $z^{*}=x-\mathrm{i} y$	M1		
	$\text { Use of } i^{2}=-1$	M1	3	Condone inclusion of i in I part
(b)	Equating R and I parts $2 x-3 y=7,3 x-2 y=8$ $z=2-\mathrm{i}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~m} 1 \\ & \mathrm{~A} 1 \\ & \hline \end{aligned}$	3	with attempt to solve Allow $x=2, y=-1$
	Total		6	
3(a)	$\int x^{-1 / 2} \mathrm{~d} x=2 x^{1 / 2}(+c)$	M1A1		M1 for correct power in integral
	$x^{1 / 2} \rightarrow \infty$ as $x \rightarrow \infty$, so no value	E1	3	
(b)	$\int x^{-3 / 2} \mathrm{~d} x=-2 x^{-1 / 2}(+c)$	M1A1		M1 for correct power in integral
	$x^{-1 / 2} \rightarrow 0 \text { as } x \rightarrow \infty$	E1		
	$\int_{9}^{\infty} x^{-3 / 2} \mathrm{~d} x=-2\left(0-\frac{1}{3}\right)=\frac{2}{3}$	A1	4	Allow A1 for correct answer even if not fully explained
	Total		7	
4(a)	Multiplication by $x+2$ $Y=a X+b$ convincingly shown	M1	2	applied to all 3 terms AG
(b)(i)	$X=8,15,24$ in table	B1		
	$Y=5.72,12,20.1$ in table	B1	2	Allow correct to 2SF

MFP1 (cont)

Q	Solution	Marks	Total	Comments
4(b)(ii)	 Four points plotted Reasonable line drawn Method for gradient $a=$ gradient ≈ 0.9 $b=Y$-intercept ≈-1.5	$\begin{aligned} & \text { B1F } \\ & \text { B1F } \\ & \\ & \text { M1 } \\ & \text { A1 } \\ & \text { B1F } \end{aligned}$	2 3	ft incorrect values in table ft incorrect points or algebraic method for a or b Allow from 0.88 to 0.93 incl Allow from -2 to -1 inclusive; ft incorrect points/line NMS B1 for a, B1 for b
	Total		9	
5(a) 5(b)	$\cos \frac{\pi}{4}=\frac{1}{\sqrt{2}}$ stated or used Appropriate use of \pm Introduction of $2 n \pi$ Subtraction of $\frac{\pi}{3}$ and multiplication by 2 $\begin{aligned} & x=-\frac{2 \pi}{3} \pm \frac{\pi}{2}+4 n \pi \\ & n=1 \text { gives min pos } x=\frac{17 \pi}{6} \end{aligned}$	B1 B1 M1 m1 A1 M1A1	$\begin{aligned} & 5 \\ & 2 \end{aligned}$	Degrees or decimals penalised in 5th mark only OE OE All terms multiplied by 2 OE NMS 1/2 provided (a) correct
	Total		7	
6(a) (b) (c)	$\begin{aligned} & \mathbf{A B}=\left[\begin{array}{cc} 0 & -4 \\ 4 & 0 \end{array}\right] \\ & \mathbf{A}^{2}=\left[\begin{array}{ll} 4 & 0 \\ 0 & 4 \end{array}\right] \\ & \ldots=4 \mathbf{I} \\ & (\mathbf{A B})^{2}=-16 \mathbf{I} \\ & \mathbf{B}^{2}=4 \mathbf{I} \\ & \text { so } \mathbf{A}^{2} \mathbf{B}^{2}=16 \mathbf{I} \quad \text { (hence result) } \end{aligned}$	M1A1 B1 B1 B1 B1 B1	2 2 3	M1A0 if 3 entries correct PI Condone absence of conclusion
	Total		7	

MFP1 (cont)

MFP1 (cont)

Q	Solution	Marks	Total	Comments
8(c)	Matrix of reflection is $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ Multiplication of above matrices Answer is $\left[\begin{array}{ll}0 & 1 \\ 3 & 0\end{array}\right]$	B1 M1 A1F	3	Alt: calculating matrix from the coordinates: M1 A2,1 in correct order ft wrong answer to (a); NMS $1 / 3$
	Total		7	
9(a)	Equation is $y-4=m(x-3)$	M1A1	2	OE; M1A0 if one small error
(b)	Elimination of x $4 y-16=m\left(y^{2}-12\right)$ Hence result	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	OE (no fractions) convincingly shown (AG)
(c)	Discriminant equated to zero $\begin{aligned} & (3 m-1)(m-1)=0 \\ & \text { Tangents } y=x+1, y=\frac{1}{3} x+3 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { m1A1 } \\ \text { A1A1 } \end{gathered}$	5	$\mathrm{OE} ; \mathrm{ml}$ for attempt at solving OE
(d)	$m=1 \Rightarrow y^{2}-4 y+4=0$ so point of contact is $(1,2)$ $m=\frac{1}{3} \Rightarrow \frac{1}{3} y^{2}-4 y+12=0$ so point of contact is $(9,6)$	M1 A1 M1 A1	4	OE; $m=1$ needed for this OE; $m=\frac{1}{3}$ needed for this
	Total		14	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MFP1
 Further Pure 1

Mark Scheme

2009 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

[^3]Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
\checkmark or ft or F	follow through from previous incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
$-x$ EE	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP1

MFP1 (cont)

Q	Solution	Marks	Total	Comments
5(a)(i)	$\mathbf{A}+\mathbf{B}=\left[\begin{array}{cc} 0 & 2 k \\ 2 k & 0 \end{array}\right]$	B1	1	
(ii)	$\mathbf{A}^{2}=\left[\begin{array}{cc} 2 k^{2} & 0 \\ 0 & 2 k^{2} \end{array}\right]$	B2,1	2	B1 if three entries correct
(b)	$(\mathbf{A}+\mathbf{B})^{2}==\left[\begin{array}{cc} 4 k^{2} & 0 \\ 0 & 4 k^{2} \end{array}\right]$ $\mathbf{B}^{2}=\mathbf{A}^{2}$, hence result	$\begin{gathered} \mathrm{B} 2,1 \\ \mathrm{~B} 1 \mathrm{~B} 1 \end{gathered}$	4	B1 if three entries correct
(c)(i)	\mathbf{A}^{2} is an enlargement (centre O) with SF 2	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	Condone $2 k^{2}$
(ii)	Scale factor is now $\sqrt{2}$ Mirror line is $y=x \tan 22 \frac{1}{2}^{\circ}$	$\begin{gathered} \mathrm{B} 1 \\ \text { M1A1 } \end{gathered}$	3	Condone $\sqrt{2} k$
	Total		12	
6(a)(i)	Asymptotes $x=0, x=2, y=1$	B1×3	3	
(ii)	Intersections at (1,0) and (3,0)	B1	1	
(iii)	At least one branch approaching asymptotes	B1		
	Each branch	B1×3	4	
(b)	$0<x<1,2<x<3$	B1,B1	2	Allow B1 if one repeated error occurs, eg \leq for $<$
	Alternative: Complete correct algebraic method	M1A1	(2)	
	Total		10	
7(a)	Use of similar triangles or algebra Correct relationship established Hence result convincingly shown	$\begin{gathered} \mathrm{M} 1 \\ \mathrm{~m} 1 \mathrm{~A} 1 \\ \mathrm{~A} 1 \end{gathered}$	4	Some progress needed eg $\frac{r-a}{c}=\frac{b-a}{c-d}$ AG
(b)(i)	$\begin{aligned} & c=\mathrm{f}(a)=24, d=\mathrm{f}(b)=-21 \\ & r=\frac{38}{15}(\approx 2.5333) \end{aligned}$	$\begin{gathered} \mathrm{B} 1, \mathrm{~B} 1 \\ \mathrm{~B} 1 \mathrm{~F} \end{gathered}$	3	Allow AWRT 2.53; ft small error
(ii)	$\begin{aligned} & \beta=20^{\frac{1}{3}} \approx 2.714(4) \\ & \text { So } \beta-r \approx 0.181 \approx 0.18(\mathrm{AG}) \end{aligned}$	$\begin{gathered} \text { M1A1 } \\ \text { A1 } \\ \hline \end{gathered}$	3	Allow AWRT 2.71 Allow only 2dp if earlier values to 3dp
	Total		10	

MFP1 (cont)

Q	Solution	Marks	Total	Comments
8(a)	$\int x^{-\frac{3}{4}} \mathrm{~d} x=4 x^{\frac{1}{4}}(+c)$	M1A1		M1 if index correct
	This tends to ∞ as $x \rightarrow \infty$, so no value	A1F	3	ft wrong coefficient
(b)	$\int x^{-\frac{5}{4}} \mathrm{~d} x=-4 x^{-\frac{1}{4}}(+c)$	M1A1		M1 if index correct
	$\int_{1}^{\infty} x^{-\frac{5}{4}} \mathrm{~d} x=0-(-4)=4$	A1F	3	ft wrong coefficient
(c)	Subtracting 4 leaves ∞, so no value	B1F	1	ft if c has 'no value' in (a) but has a finite answer in (b)
	Total		7	
9(a)	Asymptotes are $y= \pm \sqrt{2} x$	M1A1	2	M1A0 if correct but not in required form
(b)	Asymptotes correct on sketch	B1F		With gradients steeper than 1 ; ft from $y= \pm m x$ with $m>1$
	Two branches in roughly correct positions Approaching asymptotes correctly	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	3	Asymptotes $y= \pm m x$ needed here
(c)(i)	Elimination of y Clearing denominator correctly $x^{2}-2 c x-\left(c^{2}+2\right)=0$	$\begin{gathered} \text { M1 } \\ \text { M1 } \\ \text { m1A1 } \end{gathered}$	4	Convincingly found (AG)
(ii)	$\begin{aligned} & \text { Discriminant }=8 c^{2}+8 \\ & \ldots>0 \text { for all } c \text {, hence result } \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { E1 } \end{aligned}$	2	Accept unsimplified OE
(iii)	Solving gives $x=c \pm \sqrt{2\left(c^{2}+1\right)}$	M1A1		
	$y=x+c=2 c \pm \sqrt{2\left(c^{2}+1\right)}$	A1	3	Accept $y=c+\frac{2 c \pm \sqrt{8 c^{2}+8}}{2}$
	Total		14	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MFP1 Further Pure 1

Mark Scheme

2009 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

[^4]
Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP1

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Totals \& Comments \\
\hline \begin{tabular}{l}
1(a) \\
(b) \\
(c)
\end{tabular} \& \[
\begin{aligned}
\& \alpha+\beta=-\frac{1}{2}, \alpha \beta=-4 \\
\& \alpha^{2}+\beta^{2}=\left(-\frac{1}{2}\right)^{2}-2(-4)=8 \frac{1}{4} \\
\& \text { Sum of roots }=4\left(8 \frac{1}{4}\right)=33 \\
\& \text { Product }=16(\alpha \beta)^{2}=256 \\
\& \text { Equation is } x^{2}-33 x+256=0
\end{aligned}
\] \& \begin{tabular}{l}
B1B1 \\
M1A1F \\
B1F \\
B1F \\
B1F
\end{tabular} \& 2
2

3 \& | M1 for substituting in correct formula; ft wrong answer(s) in (a) |
| :--- |
| ft wrong answer in (b) |
| ft wrong answer in (a) |
| ft wrong sum and/or product; |
| allow ' $p=-33, q=256$ '; |
| condone omission of ' $=0$, |

\hline \& Total \& \& 7 \&

\hline 2(a) \& | When $x=2, y=-3$ |
| :--- |
| Use of $(2+h)^{2}=4+4 h+h^{2}$ |
| Correct method for gradient $\text { Gradient }=\frac{-3-2 h+h^{2}+3}{h}=-2+h$ |
| As h tends to 0 , ... the gradient tends to -2 | \& | B1 |
| :--- |
| M1 |
| M1 |
| A2,1 |
| E2,1 |
| B1F | \& 5

3 \& | PI |
| :--- |
| A1 if only one small error made |
| E1 for ' $h=0$ ' dependent on at least E1 ft small error in (a) |

\hline \& Total \& \& 8 \&

\hline | 3(a)(i) |
| :--- |
| (ii) |
| (b) | \& | $z^{2}=\left(x^{2}-4\right)+\mathrm{i}(4 x)$ |
| :--- |
| R and I parts clearly indicated $z^{2}+2 z^{*}=\left(x^{2}+2 x-4\right)+\mathrm{i}(4 x-4)$ |
| $z^{2}+2 z^{*}$ real if imaginary part zero ... ie if $x=1$ | \& \[

$$
\begin{gathered}
\text { M1A1 } \\
\text { A1F } \\
\text { M1A1F } \\
\text { M1 } \\
\text { A1F }
\end{gathered}
$$

\] \& \[

2

\] \& | M1 for use of $\mathrm{i}^{2}=-1$ |
| :--- |
| Condone inclusion of i in I part ft one numerical error |
| M1 for correct use of conjugate ft numerical error in (i) |
| ft provided imaginary part linear |

\hline \& Total \& \& 7 \&

\hline | 4(a) |
| :--- |
| (b)(i) |
| (ii) | \& | $\begin{aligned} & \lg \left(a b^{x}\right)=\lg a+\lg \left(b^{x}\right) \\ & \ldots=\lg a+x \lg b \end{aligned}$ |
| :--- |
| Correct relationship established [SC After M0M0, B2 for correct form] |
| When $x=2.3, Y \approx 1.1$, so $y \approx 12.6$ |
| When $y=80, Y \approx 1.90$, so $x \approx 1.1$ | \& | M1 |
| :--- |
| M1 |
| A1 |
| M1A1 |
| M1A1 | \& 3

4 \& | Use of one log law Use of another log law |
| :--- |
| Allow 12.7; allow NMS |
| M1 for $Y \approx 1.9$, allow NMS |

\hline \multicolumn{3}{|c|}{Total} \& 7 \&

\hline
\end{tabular}

MFP1 (cont)

Q	Solution	Marks	Totals	Comments
5(a)	$\cos \frac{\pi}{3}=\frac{1}{2}$ Appropriate use of \pm Introduction of $2 n \pi$ Going from $3 x-\pi$ to x $x=\frac{\pi}{3} \pm \frac{\pi}{9}+\frac{2}{3} n \pi$ At least one value in given range Correct values $\frac{92}{9} \pi, \frac{94}{9} \pi, \frac{98}{9} \pi$	$\begin{gathered} \text { B1 } \\ \text { B1 } \\ \text { M1 } \\ \text { m1 } \\ \text { A2,1F } \\ \\ \text { M1 } \\ \text { A2,1 } \end{gathered}$	3	Decimals/degrees penalised at 6th mark only OE (or $\mathrm{n} \pi$) at any stage including dividing all terms by 3 OE; A1 with decimals and/or degrees; ft wrong first solution compatible with c's GS A1 if one omitted or wrong values included; A0 if only one correct value given
	Total		9	
6(a)	Ellipse with centre of origin $(\pm \sqrt{3}, 0)$ and (0 ± 2) shown on diagram	$\begin{gathered} \text { B1 } \\ \text { B2,1 } \end{gathered}$	3	Allow unequal scales on axes Condone AWRT 1.7 for $\sqrt{3}$; B1 for incomplete attempt
(b)	y replaced by $\frac{1}{2} y$ Equation is now $\frac{x^{2}}{3}+\frac{y^{2}}{16}=1$	M1A1 A1	3	M1A0 for $2 y$ instead of $\frac{1}{2} y$
(c)	Attempt at completing the square $4(x-1)^{2}+3(y+1)^{2} \ldots$	$\begin{gathered} \mathrm{M} 1 \\ \mathrm{~A} 1 \mathrm{~A} 1 \end{gathered}$		
	$\begin{aligned} & \text { [Alt: replace } x \text { by } x-a \text { and } y \text { by } y-b \\ & 4 x^{2}-8 a x+3 y^{2}-6 b y \ldots \text {] } \\ & a=1 \text { and } b=-1 \end{aligned}$	$\begin{gathered} \text { (M1) } \\ (\mathrm{m} 1 \mathrm{~A} 1) \\ \mathrm{A} 1 \mathrm{~A} 1 \\ \hline \end{gathered}$	5	M1 if one replacement correct Condone errors in constant terms
	Total		11	

MFP1 (cont)

General Certificate of Education

Mathematics 6360

MFP1
 Further Pure 1

Mark Scheme

2010 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Mark	Total	Comments
1(a)	$\alpha+\beta=2, \alpha \beta=\frac{1}{3}$	B1B1	2	
(b)	$\begin{aligned} & \alpha^{3}+\beta^{3}=(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta) \\ & \ldots=8-3\left(\frac{1}{3}\right)(2)=6 \end{aligned}$	$\begin{gathered} \mathrm{M} 1 \\ \mathrm{~m} 1 \mathrm{~A} 1 \end{gathered}$	3	or other appropriate formula m 1 for substn of numerical values; A1 for result shown (AG)
(c)	$\text { Sum of roots }=\frac{\alpha^{3}+\beta^{3}}{\alpha \beta}$	M1		
	$\ldots=\frac{6}{1 / 3}=18$	A1F		ft wrong value for $\alpha \beta$
	Product $=\alpha \beta=\frac{1}{3}$	B1F		ditto
	Equation is $3 x^{2}-54 x+1=0$	A1F	4	Integer coeffs and " $=0$ " needed; ft wrong sum and/or product
	Total		9	
2(a)	$z^{2}=1+2 \mathrm{i}+\mathrm{i}^{2}=2 \mathrm{i}$	M1A1	2	M1 for use of $\mathrm{i}^{2}=-1$
(b)	$\begin{aligned} & z^{8}=(2 \mathrm{i})^{4} \\ & \ldots=16 \mathrm{i}^{4}=16 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	or equivalent complete method convincingly shown (AG)
(c)	$\begin{aligned} & \left(z^{*}\right)^{2}=(1-\mathrm{i})^{2} \\ & \ldots=-2 \mathrm{i}=-z^{2} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	2	for use of $z^{*}=1-\mathrm{i}$ convincingly shown (AG)
	Total		6	
3	$\sin \frac{\pi}{2}=1$ stated or used			Deg/dec penalised in 4th mark
	Introduction of $2 n \pi$	M1		(or $n \pi$) at any stage
	Going from $4 x+\frac{\pi}{4}$ to x	m1		incl division of all terms by 4
	$x=\frac{\pi}{16}+\frac{1}{2} n \pi$	A1	4	or equivalent unsimplified form
	Total		4	
4(a)	$\mathbf{I}=\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right]$	B1		stated or used at any stage
	Attempt at ($\mathbf{A}-\mathbf{I})^{2}$	M1		with at most one numerical error
	$(\mathbf{A}-\mathbf{I})^{2}=\left[\begin{array}{ll} 0 & 4 \\ 3 & 0 \end{array}\right]\left[\begin{array}{ll} 0 & 4 \\ 3 & 0 \end{array}\right]=12 \mathbf{I}$	A1	3	
(b)	$\mathbf{A}-\mathbf{B}=\left[\begin{array}{cc} 0 & 1 \\ 3-p & 0 \end{array}\right]$	B1		
	$\begin{aligned} & (\mathbf{A}-\mathbf{B})^{2}=\left[\begin{array}{cc} 3-p & 0 \\ 0 & 3-p \end{array}\right] \\ & \ldots=(\mathbf{A}-\mathbf{I})^{2} \text { for } p=-9 \end{aligned}$	M1A1 A1F	4	M1 A0 if 3 entries correct ft wrong value of k
	Total		7	

MFP1

Q	Solution	Mark	Total	Comments
5(a)	$x^{-1 / 2} \rightarrow \infty \text { as } x \rightarrow 0$	E1	1	Condone " $x^{-1 / 2}$ has no value at $x=0$ "
(b)(i)	$\int x^{-1 / 2} \mathrm{~d} x=2 x^{1 / 2}(+c)$	M1A1		M1 for correct power of x
	$\int_{0}^{1 / 66} x^{-1 / 2} \mathrm{~d} x=\frac{1}{2}$	A1F	3	ft wrong coefficient of $x^{1 / 2}$
(ii)	$\int x^{-5 / 4} \mathrm{~d} x=-4 x^{-1 / 4}(+c)$	M1A1		M1 for correct power of x
	$x^{-1 / 4} \rightarrow \infty$ as $x \rightarrow 0$, so no value	E1F	3	ft wrong coefficient of $x^{-1 / 4}$
	Total		7	
6(a)(i)	Coords (3, 2), (9, 2), (9, 4), (3, 4)	M1A1	2	M1 for multn of x by 3 or y by 2 (PI)
(ii)	R_{2} shown correctly on insert	B1	1	
(b)(i)	R_{3} shown correctly on insert	B2,1F	2	B1 for rectangle with 2 vertices correct; ft if c 's R_{2} is a rectangle in 1st quad
(ii)	Matrix of rotation is $\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$	B1	1	
(c)	Multiplication of matrices	M1		(either way) or other complete method
	Required matrix is $\left[\begin{array}{cc}0 & 2 \\ -3 & 0\end{array}\right]$	A1	2	
	Total		8	
7(a)(i)	Asymptotes $x=2, y=0$	B1B1	2	
(ii)	One correct branch Both branches correct	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	no extra branches; $x=2$ shown
(b)(i)	$\mathrm{f}(3)=-1, \mathrm{f}(4)=3$	B1		where $\mathrm{f}(x)=(x-3)(x-2)^{2}-1 ; \mathrm{OE}$
	Sign change, so α between 3 and 4	E1	2	
(ii)	$\mathrm{f}(3.5)$ considered first	M1		OE but must consider $x=3.5$
	$\mathrm{f}(3.5)>0$ so $3<\alpha<3.5$	A1		Some numerical value(s) needed
	$\mathrm{f}(3.25)<0$ so $3.25<\alpha<3.5$	A1	3	Condone absence of values here
	Total		9	

Q	Solution	Mark	Total	Comments
8(a) (b)	$\Sigma r^{3}+\Sigma r=\frac{1}{4} n^{2}(n+1)^{2}+\frac{1}{2} n(n+1)$ Factor n clearly shown $\ldots=\frac{1}{4} n(n+1)\left(n^{2}+n+2\right)$ Valid equation formed Factors $n, n+1$ removed $3 n^{2}-29 n-10=0$ Valid factorisation or solution $n=10$ is the only pos int solution	M1 m1 A1A1 M1 m1 A1 m1 A1	5	at least one term correct or $n+1$ clearly shown to be a factor OE; A1 for $\frac{1}{4}$, A1 for quadratic OE of the correct quadratic SC $1 / 2$ for $n=10$ after correct quad
	Total		9	
9(a)	$\begin{aligned} & x=2, y=0 \Rightarrow \frac{4}{a^{2}}-0=1 \text { so } a=2 \\ & \text { Asymps } \Rightarrow \pm \frac{b}{a}= \pm 2 \text { so } b=2 a=4 \end{aligned}$	E2,1 E2,1	4	E1 for verif'n or incomplete proof ditto
(b)	Line is $y-0=m(x-1)$ Elimination of y $4 x^{2}-m^{2}\left(x^{2}-2 x+1\right)=16$ So $\left(m^{2}-4\right) x^{2}-2 m^{2} x+\left(m^{2}+16\right)=0$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~A} 1 \end{aligned}$	4	OE OE (no fractions) convincingly shown (AG)
(c)	Discriminant equated to zero $4 m^{4}-4 m^{4}-64 m^{2}+16 m^{2}+256=0$ $-3 m^{2}+16=0$, hence result	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	OE convincingly shown (AG)
(d)	$\begin{aligned} & m^{2}=\frac{16}{3} \Rightarrow \frac{4}{3} x^{2}-\frac{32}{3} x+\frac{64}{3}=0 \\ & x^{2}-8 x+16=0, \text { so } x=4 \end{aligned}$ Method for y-coordinates $y= \pm 4 \sqrt{3}$	$\begin{gathered} \mathrm{M} 1 \\ \mathrm{~m} 1 \mathrm{~A} 1 \\ \mathrm{~m} 1 \\ \mathrm{~A} 1 \end{gathered}$	5	using $m= \pm \frac{4}{\sqrt{3}}$ or from equation of hyperbola; dep't on previous m1
	Total		16	
	TOTAL		75	

General Certificate of Education June 2010

Mathematics
MFP1

Further Pure 1

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M mark is for method
m or $\mathrm{dM} \quad$ mark is dependent on one or more M marks and is for method
A mark is dependent on M or m marks and is for accuracy
B mark is independent of M or m marks and is for method and accuracy
E

Jor ft or F	follow through from previous incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
$-x$ EE	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP1

Q	Solution	Marks	Total	Comments
Q	First increment is $0.1 \times 2(=0.2)$ So next value of y is 3.2 Second inc't is $0.1\left(1+1.1^{3}\right)=0.2331$ Third inc't is $0.1\left(1+1.2^{3}\right)=0.2728$ So $y \approx 3.7059 \approx 3.706$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { m1A1 } \\ \text { A1 } \\ \text { A1F } \end{gathered}$	6	variations possible here PI PI PI ft one numerical error
	Total		6	
2(a)	Use of $z^{*}=x-\mathrm{i} y$ Use of $\mathrm{i}^{2}=-1$ $\begin{aligned} & (1-2 \mathrm{i}) z-z^{*}=2 y+\mathrm{i}(2 y-2 x) \\ & 2 y=20,2 y-2 x=10 \\ & \text { so } z=5+10 \mathrm{i} \end{aligned}$	M1 M1 A2,1 M1 A1	2	A1 if one numerical error made equate and attempt to solve $\text { allow } x=5, y=10$
	Total		6	
3	Introduction of $360 n^{\circ}$ $5 x-20^{\circ}= \pm 40^{\circ}\left(+360 n^{\circ}\right)$ Going from $5 x-20^{\circ}$ to x GS is $x=4^{\circ} \pm 8^{\circ}+72 n^{\circ}$	M1 B1 m1 A2,1	5	(or $180 n^{\circ}$) at any stage; condone $2 n \pi$ (or $n \pi$) OE, eg RHS ' 40° or 320°, including division of all terms by 5 OE; A1 if radians present in answer
	Total		5	
4(a) (b)	4, 16, 36, 64 entered in table	B1	1	
	Four points plotted accurately Linear graph drawn	$\begin{gathered} \text { B1F } \\ \text { B1 } \end{gathered}$	2	ft wrong values in (a)
(c)(i)	Finding X for $y=15$ and taking sq root $x \approx 5.3$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	AWRT 5.2 or 5.3; NMS $1 / 2$
(ii)	Calculation of gradient	M1		
	$a=\text { gradient } \approx 0.37$	A1		AWRT 0.36 to 0.38 ; NMS $1 / 2$
		B1F	3	can be found by calculation; ft c's y-intercept
	Total		8	

MFP1 (cont)

Q	Solution	Marks	Total	Comments
5(a)	At $B, y=(2+h)^{3}-12(2+h)$	M1		with attempt to expand and simplify
	$\begin{aligned} & =\left(8+12 h+6 h^{2}+h^{3}\right)-(24+12 h) \\ & \left(=-16+6 h^{2}+h^{3}\right) \end{aligned}$	B1		correct expansion of $(2+h)^{3}$
	$\operatorname{Grad} A B=\frac{\left(-16+6 h^{2}+h^{3}\right)-(-16)}{(2+h)-2}$	m1		
	$=\frac{6 h^{2}+h^{3}}{h}=6 h+h^{2}$	A1	4	convincingly shown (AG)
(b)	As $h \rightarrow 0$ this gradient $\rightarrow 0$ so gradient of curve at A is 0	E2,1	2	E1 for ' $h=0$ '
	Total		6	
6(a)	Rotation 45° (anticlockwise)(about O)	M1A1	2	M1 for 'rotation'
(b)	Reflection in $y=x \tan 22.5{ }^{\circ}$	M1A1	2	M1 for 'reflection'
(c)	Rotation 90° (anticlockwise)(about O)	M1A1F	2	M1 for 'rotation' or correct matrix; ft wrong angle in (a)
(d)	Identity transformation	B2,1F	2	ft wrong mirror line in (b); B 1 for $\mathbf{B}^{2}=\mathbf{I}$
(e)	$\mathbf{A B}=\left[\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right]$ Reflection in $y=x$	M1A1 A1	3	allow M1 if two entries correct
	Total		11	
7(a)(i)	Asymptotes $x=3$ and $y=0$	B1,B1		may appear on graph
(ii)	Complete graph with correct shape Coordinates $\left(0,-\frac{1}{3}\right)$ shown	B1 B1	2	
(iii)	Correct line, $(0,-5)$ and $(2.5,0)$ shown	B1	1	
(b)(i)	$2 x^{2}-11 x+14=0$	B1		
	$x=2$ or $x=3.5$	M1A1	3	M1 for valid method for quadratic
(ii)	$2<x<3, x>3.5$	B2,1F	2	B1 for partially correct solution; ft incorrect roots of quadratic (one above 3, one below 3)
	Total		10	

MFP1 (cont)

Q	Solution	Marks	Total	Comments
8(a)	$\alpha+\beta=4, \alpha \beta=10$	B1,B1	2	
(b)	$\begin{aligned} \frac{1}{\alpha}+\frac{1}{\beta} & =\frac{\alpha+\beta}{\alpha \beta} \\ & =\frac{4}{10}=\frac{2}{5} \end{aligned}$	M1 A1	2	convincingly shown (AG)
(c)	$\begin{aligned} \text { Sum of roots } & =(\alpha+\beta)+2(\text { ans to }(\mathrm{b})) \\ & =4 \frac{4}{5} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1F } \end{gathered}$		ft wrong value for $\alpha+\beta$
	$\begin{aligned} \text { Product } & =\alpha \beta+4+\frac{4}{\alpha \beta} \\ & =14 \frac{2}{5} \end{aligned}$	M1A1 A1F		M1 for attempt to expand product (at least two terms correct) ft wrong value for $\alpha \beta$
	Equation is $5 x^{2}-24 x+72=0$	A1F	6	integer coeffs and ' $=0$ ' needed here; ft one numerical error
	Total		10	
9(a)(i)	Parabola drawn passing through $(2,0)$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \end{gathered}$	2	with x-axis as line of symmetry
$\begin{array}{r} \text { (ii) } \\ \text { (b)(i) } \end{array}$	Two tangents passing through ($-2,0$)	B1B1	2	to c's parabola
	Elimination of y	M1		
	Correct expansion of $(x+2)^{2}$	B1		
	Result	A1	3	convincingly shown (AG)
(ii)	Correct discriminant	B1		
	$16 m^{4}-8 m^{2}+1=16 m^{4}+8 m^{2}$	M1		OE
	Result	A1	3	convincingly shown (AG)
(iii)	$\frac{1}{16} x^{2}-\frac{3}{4} x+\frac{9}{4}=0$	M1		OE
	$x=6, y= \pm 2$	A1,A1	3	
	Total		13	
	TOTAL		75	

General Certificate of Education (A-level)

 January 2011
Mathematics

(Specification 6360)

Further Pure 1

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP1

Q	Solution	Marks	Total	Comments
1(a) (b) (c)	$\alpha+\beta=6, \alpha \beta=18$ Sum of new roots $=6^{2}-2(18)=0$ Product $=18^{2}=324$ Equation $x^{2}+324=0$ α^{2} and β^{2} are $\pm 18 \mathrm{i}$	$\begin{gathered} \text { B1B1 } \\ \text { M1A1F } \\ \text { B1F } \\ \text { A1F } \\ \text { B1 } \end{gathered}$	1	ft wrong value(s) in (a) ditto ' $=0$ ' needed here; ft wrong value(s) for sum/product
	Total		7	
2(a) (b)(i) (ii)	$\begin{aligned} & \int_{q} 2 x^{-3} \mathrm{~d} x=-x^{-2}(+c) \\ & \int_{p}^{q} 2 x^{-3} \mathrm{~d} x=p^{-2}-q^{-2} \end{aligned}$ As $p \rightarrow 0, p^{-2} \rightarrow \infty$, so no value As $q \rightarrow \infty, q^{-2} \rightarrow 0$, so value is $1 / 4$	M1A1 A1F B1 M1A1F	3	M1 for correct index OE; ft wrong coefficient of x^{-2} ft wrong coefficient of x^{-2} or reversal of limits
	Total		6	
3(a)(i)	$\begin{aligned} & {\left[\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right]} \\ & {\left[\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right]} \end{aligned}$	B1 B1	1 1	
(b)(i) (ii)	$\begin{aligned} & \mathbf{A B}=\left[\begin{array}{cc} -20 & 14 \\ 14 & -10 \end{array}\right] \\ & \mathbf{A}+\mathbf{B}=\left[\begin{array}{cc} 0 & 5 \\ -5 & 0 \end{array}\right] \\ & (\mathbf{A}+\mathbf{B})^{2}=\left[\begin{array}{cc} -25 & 0 \\ 0 & -25 \end{array}\right] \end{aligned}$	M1A1 B1 B1	2	M1A0 if 3 entries correct
	$\ldots=-25 \mathbf{I}$	B1F	3	$\mathrm{ft} \mathrm{if} \mathrm{c's}(\mathbf{A}+\mathbf{B})^{2}$ is of the form $k \mathbf{I}$
(c)(i)	Rot'n 90° clockwise, enlargem't SF 5	B2, 1	2	OE
(ii)	Rotation 180°, enlargement SF 25	$\mathrm{B} 2,1 \mathrm{~F}$	2	Accept 'enlargement SF -25 '; ft wrong value of k
(iii)	Enlargement SF 625	B2, 1F	2	B1 for pure enlargement; ft ditto
	Total		13	
4	$\begin{aligned} & \sin \left(-\frac{\pi}{6}\right)=-\frac{1}{2} \\ & \sin \left(-\frac{5 \pi}{6}\right)=-\frac{1}{2} \end{aligned}$ Use of $2 n \pi$ Going from $4 x-\frac{2 \pi}{3}$ to x $\text { GS } x=\frac{\pi}{8}+\frac{1}{2} n \pi \text { or } x=-\frac{\pi}{24}+\frac{1}{2} n \pi$	B1 B1F M1 m1 A1A1		OE; dec/deg penalised at 6th mark OE ; ft wrong first value (or $n \pi$) at any stage including division of all terms by 4 OE
	Total		6	

MFP1(cont)

Q	Solution	Marks	Total	Comments
5(a)(i)	$z_{1}{ }^{2}=\frac{1}{4}-\mathrm{i}+\mathrm{i}^{2}=-\frac{3}{4}-\mathrm{i}$	M1A1	2	M1 for use of $\mathrm{i}^{2}=-1$
(ii)	LHS $=-\frac{3}{4}-\mathrm{i}+\frac{1}{2}+\mathrm{i}+\frac{1}{4}=0$	M1A1	2	AG; M1 for z^{*} correct
(b)	LHS $=-\frac{3}{4}+i+\frac{1}{2}-i+\frac{1}{4}=0$	M1A1	2	AG; M1 for $z_{2}{ }^{2}$ correct
(c)	$z \text { real } \Rightarrow z^{*}=z$ Discr't zero or correct factorisation	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	Clearly stated AG
	Total		8	
6(a)	Sketch of ellipse	M1		centred at origin
	Correct relationship to circle	A1		
	Coords $(\pm 2 \sqrt{2}, 0),(0, \pm \sqrt{2})$	B2,1	4	Accept $\sqrt{8}$ for $2 \sqrt{2}$;
				B1 for any 2 of $x= \pm 2 \sqrt{2}, y= \pm \sqrt{2}$ allow B1 if all correct except for use of decimals (at least one DP)
(b)(i)	$\text { Replacing } x \text { by } \frac{x}{2}$	M1		or by $2 x$
	E is $\left(\frac{x}{2}\right)^{2}+y^{2}=2$	A1	2	
(ii)	Tangent is $\frac{x}{2}+y=2$	M1A1	2	M1 for complete valid method
	Total		8	
7(a)	Denom never zero, so no vert asymp	E1		
	Horizontal asymptote is $y=0$	B1	2	
(b)	$x-4=k\left(x^{2}+9\right)$	M1		
	Hence result clearly shown	A1	2	AG
(c)	Real roots if $b^{2}-4 a c \geq 0$	E1		PI (at any stage)
	Discriminant $=1-4 k(9 k+4)$	M1		
	... $=-\left(36 k^{2}+16 k-1\right)$	m1		m1 for expansion
	$\ldots=-(18 k-1)(2 k+1)$	m1		m 1 for correct factorisation
	Result (AG) clearly justified	A1	5	eg by sketch or sign diagram
(d)	$k=-\frac{1}{2} \Rightarrow-\frac{1}{2} x^{2}-x-\frac{1}{2}=0$	M1A1		or equivalent using $k=\frac{1}{18}$
	$\ldots \Rightarrow(x+1)^{2}=0 \Rightarrow x=-1$	A1		
	$k=\frac{1}{18} \Rightarrow \frac{1}{18} x^{2}-x+\frac{9}{2}=0$	A1		
	$\ldots \Rightarrow(x-9)^{2}=0 \Rightarrow x=9$	A1		
	SPs are $\left(-1,-\frac{1}{2}\right),\left(9, \frac{1}{18}\right)$	A1	6	correctly paired
	Total		15	

MFP1(cont)

General Certificate of Education (A-level) June 2011

Mathematics

MFP1

(Specification 6360)

Further Pure 1

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

[^5]Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy E
mark is for explanation	

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1	Attempt at $0.5 \times y^{\prime}(2)(=0.25)$ $\begin{aligned} y(2.5) & \approx 3.25 \\ y(3) & \approx 3.25+0.5 y^{\prime}(2.5) \\ & \approx 3.25+0.2357(0) \\ & \approx 3.4857 \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { m1 } \\ \text { A1F } \\ \text { A1 } \\ \hline \end{gathered}$	5	Other variations are allowed PI; OE; ft c's value for $y(2.5)$ 4 dp needed
	Total		5	
2(a) (b) (c)	$\begin{aligned} & \alpha+\beta=-\frac{3}{2}, \alpha \beta=\frac{3}{4} \\ & \alpha^{2}+\beta^{2}=\left(-\frac{3}{2}\right)^{2}-2\left(\frac{3}{4}\right)=\frac{3}{4} \\ & \text { Sum }=2(\alpha+\beta)=-3 \\ & \text { Product }=10 \alpha \beta-3\left(\alpha^{2}+\beta^{2}\right)=\frac{21}{4} \\ & x^{2}-S x+P(=0) \end{aligned}$ Eqn is $4 x^{2}+12 x+21=0$	B1B1 M1A1 B1F M1A1F M1 A1	$\begin{aligned} & 2 \\ & 2 \end{aligned}$ 5	$\mathrm{AG} ; \mathrm{A} 0$ if $\alpha+\beta$ has wrong sign ft wrong value for $\alpha+\beta$ ft wrong values Signs must be correct for the M1 Integer coeffs and ' $=0$ ' needed
	Total		9	
3(a) (b)	Use of $z^{*}=x-\mathrm{i} y$ $(z-\mathrm{i})\left(z^{*}-\mathrm{i}\right)=\left(x^{2}+y^{2}-1\right)-2 \mathrm{i} x$ Equating R and I parts $\begin{aligned} & -2 x=-8 \text { so } x=4 \\ & 16+y^{2}-1=24 \text { so } y= \pm 3(z=4 \pm 3 \mathrm{i}) \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { m1A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { m1A1 } \end{gathered}$	3 4	A1 may be earned in (b) A0 if $x=-4$ used
	Total		7	
4(a)	Use of one law of logs or exponentials $\lg a=c$ and $\lg b=m$ So $a=10^{c}$ and $b=10^{m}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{gathered}$	3	OE; both needed
(b)	Points (1, 1.08), (5, 1.43) plotted Straight line drawn through points	$\begin{aligned} & \text { M1A1 } \\ & \text { A1F } \end{aligned}$	3	M1 A0 if one point correct ft small inaccuracy
(c)(i)	Attempt at antilog of $Y(3)$ When $x=3, Y \approx 1.25$ so $y \approx 18$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	OE Allow AWRT 18
(ii)	Attempt at a as antilog of Y-intercept $a \approx 9.3$ to 10	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	OE AWRT
	Total		10	
5(a)	$\begin{aligned} & \cos \frac{\pi}{6}=\frac{\sqrt{3}}{2} \\ & \cos \left(-\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2} \end{aligned}$ Introduction of $2 n \pi$ Going from $3 x-\frac{\pi}{6}$ to x GS: $x=\frac{\pi}{18} \pm \frac{\pi}{18}+\frac{2}{3} n \pi$ $n=8$ will give the required solution ... which is $\frac{16}{3} \pi(\approx 16.755)$	$\begin{gathered} \text { B1 } \\ \text { B1F } \\ \text { M1 } \\ \text { m1 } \\ \text { A1F } \\ \text { M1 } \\ \text { A1 } \end{gathered}$	5 2	OE stated or used; deg/dec penalised at 5th mark OE; ft wrong first value (or $n \pi$) at any stage incl division of all terms by 3 ft wrong first value GS must include $\frac{2}{3} n \pi$ for this from correct GS; allow $\frac{48}{9} \pi$ or dec approx
	Total		7	

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline \begin{tabular}{l}
6(a) \\
(b)(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& (5+h)^{3}=125+75 h+15 h^{2}+h^{3} \\
\& y(5+h)=100+65 h+14 h^{2}+h^{3}
\end{aligned}
\] \\
Use of correct formula for gradient Gradient is \(65+14 h+h^{2}\) \\
As \(h \rightarrow 0\) this \(\rightarrow 65\)
\end{tabular} \& \begin{tabular}{l}
B1 \\
B1F \\
M1 \\
A2,1F \\
E2,1F
\end{tabular} \& 4
2 \& \begin{tabular}{l}
Accept unsimplified coefficients PI; ft numerical error in (a) \\
A1 if one numerical error made; ft numerical error already penalised E1 for ' \(h=0\) '; ft wrong values for \(p, q, r\)
\end{tabular} \\
\hline \& Total \& \& 7 \& \\
\hline \begin{tabular}{l}
\[
7(\mathbf{a})(\mathbf{i})
\] \\
(ii)
(b)(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& \mathbf{A}^{2}=\left[\begin{array}{cc}
-2 \& 2 \sqrt{3} \\
-2 \sqrt{3} \& -2
\end{array}\right] \\
\& \mathbf{A}^{3}=\left[\begin{array}{ll}
8 \& 0 \\
0 \& 8
\end{array}\right] \\
\& \ldots \ldots . .=8 \mathbf{I}
\end{aligned}
\] \\
\(\mathbf{A}^{3}\) gives enlargement with SF 8 (centre the origin) \\
Enlargement and rotation \\
Enlargement scale factor 2 \\
Rotation through \(120^{\circ}\) (antic'wise)
\end{tabular} \& \begin{tabular}{l}
M1A1 \\
M1 \\
A1 M1A1F \\
M1 \\
A1 \\
A1
\end{tabular} \& \& \begin{tabular}{l}
M1 if at least two entries correct if at least two entries correct \\
M1 for enlargement (only); ft wrong value for \(k\) Some detail needed
\end{tabular} \\
\hline \& Total \& \& 9 \& \\
\hline \begin{tabular}{l}
8(a)(i) \\
(ii) \\
(b)
\end{tabular} \& \begin{tabular}{l}
Asymptotes \(x=-2, x=2, y=0\) \\
Middle branch generally correct Other branches generally correct All branches approaching asymps Intersection at \(\left(0,-\frac{1}{4}\right)\) indicated
\[
\begin{aligned}
\& y=-2 \text { when } x= \pm \sqrt{3.5} \\
\& \text { Sol'n }-2<x<-\sqrt{3.5}, \sqrt{3.5}<x<2
\end{aligned}
\]
\end{tabular} \& \[
\begin{gathered}
\mathrm{B} 1 \times 3 \\
\text { B1 } \\
\text { B2,1 }
\end{gathered}
\] \& 3
4
4
3 \& \begin{tabular}{l}
Allow if max pt not in right place \\
Asymps must be shown correctly on diagram or elsewhere; B0 if any other intersections are shown \\
Allow NMS \\
Condone dec approx'n for \(\sqrt{3.5}\); B1 if \(\leq\) used instead of \(<\)
\end{tabular} \\
\hline \& Total \& \& 10 \& \\
\hline \begin{tabular}{l}
9(a)(i) \\
(ii) \\
(iii) \\
(b)(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
Elimination to give \(x=\frac{1}{8} x^{2}\) \\
\(A\) is \((8,8)\) \\
Equation of \(Q\) is \(x=\frac{1}{8} y^{2}\) \\
Points of contact are images in \(y=x\) \\
Eliminating \(y\) to give \(-x+c=\frac{1}{8} x^{2}\) \\
(ie \(x^{2}+8 x-8 c=0\)) \\
Distinct roots if \(\Delta>0\)
\[
\Delta=64+32 c, \text { so } c>-2
\] \\
For tangent \(c=-2\), so \(x^{2}+8 x+16=0\) \(\ldots\) and \(x=-4, y=2\) \\
Reflection in \(y=x\)
\[
x=2, y=-4
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
B1 \\
E1 \\
M1 \\
E1 \\
A1 \\
M1 \\
A1 \\
M1 \\
A1F
\end{tabular} \& 2
1
1

3 \& | OE |
| :--- |
| NMS 2/2 |
| OE; condone $y=\sqrt{8 x}$ |
| stated or implied convincingly shown (AG) OE |
| or other complete method ft wrong answer for first point; allow NMS $2 / 2$ |

\hline \& Total \& \& 11 \&

\hline \& TOTAL \& \& 75 \&

\hline
\end{tabular}

General Certificate of Education (A-level) January 2012

Mathematics
MFP1

(Specification 6360)

Further Pure 1

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk
Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy E
mark is for explanation	

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)	$\begin{aligned} & \alpha+\beta=-\frac{7}{2} \\ & \alpha \beta=4 \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	2	
(b)	$\begin{aligned} \alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta & =\left(-\frac{7}{2}\right)^{2}-2(4) \\ & =\frac{49}{4}-8=\frac{17}{4} \end{aligned}$	M1 A1	2	Using correct identity with ft or correct substitution CSO AG. A0 if $\alpha+\beta$ has wrong sign
(c)	$\begin{aligned} & (\text { Sum }=) \\ & \frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}=\frac{\alpha^{2}+\beta^{2}}{(\alpha \beta)^{2}}=\frac{17 / 4}{16}\left(=\frac{17}{64}\right) \end{aligned}$	M1		Writing $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}$ in a correct suitable form with ft or correct substitution
	$=\frac{17}{64}$	A1F		ft wrong value for $\alpha \beta$
	$(\text { Product }=) \frac{1}{(\alpha \beta)^{2}}=\frac{1}{16}\left(=\frac{4}{64}\right)$	B1F		ft wrong value for $\alpha \beta$
	$x^{2}-S x+P(=0)$	M1		Using correct general form of LHS of eqn with ft substitution of c's S and P values. PI
	Eqn is $64 x^{2}-17 x+4=0$	A1	5	CSO Integer coefficients and ${ }^{\prime}=0^{\prime}$ needed
	Total		9	
2(a)	$\int x^{-2 / 3} \mathrm{~d} x=3 x^{1 / 3}(+c)$			$k x^{\frac{1}{3}}, k \neq 0$ ie condone incorrect non-zero coefficient here
	(3) $x^{1 / 3} \rightarrow \infty$ as $x \rightarrow \infty$, so no finite value	E1		
(b)	$\int x^{-4 / 3} \mathrm{~d} x=-3 x^{-1 / 3}(+c)$	M1		$\lambda x^{-1 / 3}, \lambda \neq 0$
		A1		$-3 x^{-1 / 3} \text { OE }$
	$\int_{8}^{\infty} x^{-4 / 3} \mathrm{~d} x=-3\left(0-\frac{1}{2}\right)=\frac{3}{2}$	A1	5	CSO
	Total		5	

Q	Solution	Marks	Total	Comments
3(a)(i)	$x= \pm 3 \mathrm{i}$	B1	1	$\pm 3 \mathrm{i} \quad(a=0, b= \pm 3)$
(ii)	$x=-2 \pm 3 \mathrm{i}$	B1F	1	If not correct, ft wrong answer(s) to (i) provided (i) has a non-zero b value
(b)(i)	$(1+x)^{3}=1+3 x+3 x^{2}+x^{3}$	B1	1	Terms simplified in any order.
(ii)	$\begin{aligned} (1+2 i)^{3} & =1+3(2 i)+3(2 i)^{2}+(2 i)^{3} \\ & =1+3(2 i)+3\left(4 i^{2}\right)+\left(8 i^{3}\right) \end{aligned}$	B1F		Replacing x in (b)(i) by 2 i, squaring and cubing correctly, only ft on c's wrong non-zero coefficients from (b)(i).
	$\begin{aligned} & =1+3(2 \mathrm{i})+3(4)(-1)+(8)(-\mathrm{i}) \\ & =-11-2 \mathrm{i} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	3	$\begin{aligned} & \text { Use of } \mathrm{i}^{2}=-1 \text { at least once. } \\ & -11-2 \mathrm{i} \quad(a=-11, \quad b=-2) \end{aligned}$
(iii)	$\begin{aligned} z^{*}-z^{3} & =1-2 \mathrm{i}-(-11-2 \mathrm{i}) \\ & =12 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1F } \end{gathered}$	2	Use of $z^{*}=1-2 \mathrm{i}$ If not correct, only ft on $1-2 i-c$'s (b)(ii) if c's (b)(ii) answer is of the form $a+b i$ with $a \neq 0$ and $b \neq 0$
	Total		8	
4(a)	$\Sigma r^{2}(4 r-3)=4 \Sigma r^{3}-3 \Sigma r^{2} \ldots$	M1		Splitting up the sum into two separate sums. PI by next line.
	$=4\left(\frac{1}{4}\right) n^{2}(n+1)^{2}-3\left(\frac{1}{6}\right) n(n+1)(2 n+1)$	m1		Substitution of the two summations from FB
	$=n(n+1)\left[n(n+1)-\frac{1}{2}(2 n+1)\right.$	m1		Taking out common factors n and $n+1$.
		A1		Remaining expression eg our [...] in ACF not just simplified to AG
	$\text { Sum }=\frac{1}{2} n(n+1)\left(2 n^{2}-1\right)$	A1	5	Be convinced as form of answer is given, penalise any jumps or backward steps
(b)	$\sum_{r=20}^{40} r^{2}(4 r-3)$	M1		Attempt to take $\mathrm{S}(19)$ from $\mathrm{S}(40)$ using part (a)
	$\begin{aligned} =20(41)(3199)- & 9.5(20)(721) \\ & =2623180-136990 \end{aligned}$			
	$\sum_{r=20}^{40} r^{2}(4 r-3)=2486190$	A1	2	2486190 ; Since 'Hence' NMS 0/2.
				SC $\sum_{r=1}^{40} \ldots \ldots .-\sum_{r=1}^{20} \ldots \ldots .$. clearly attempted and evaluated to 2455390 scores B1
	Total		7	

Q	Solution	Marks	Total	Comments
5(a)(i)	Line joining points A and B	B1	1	Must not be linked to Q
(ii)	$x_{P}=2+w, \frac{w}{10}=\frac{5-2}{22-(-10)}$	M1		OE eg correct equation for $A B$ with y replaced by 0
	$x_{P}=2+10 \times \frac{3}{32}$	A1		$2+10 \times \frac{3}{32}$ OE
	$x_{P}=2.9375=2.9$ (to 1dp)	A1	3	CAO Must be 2.9
(b)(i)	Tangent at A drawn	B1	1	At least as far as meeting the x-axis. Accept reasonable attempt. Must not be linked to P.
(ii)	$\begin{aligned} & x_{Q}=2-\frac{-10}{8} \\ & \ldots=3.25 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	PI by 3.25 or $26 / 8$ OE CAO Must be 3.25
	Total		7	
6(a)	$\tan \frac{\pi}{6}=\frac{1}{\sqrt{3}}$	B1		OE (PI) Stated or used. A correct angle in 1st or 3rd quadrant for $\tan ^{-1}(1 / \sqrt{ } 3)$. Condone degrees / decimal equivs.
	$\left(\frac{x}{2}-\frac{\pi}{4}\right)=n \pi+\frac{\pi}{6}$	M1		Correct use of either $n \pi$ or $2 n \pi$. Eg either $n \pi+\alpha$ or both $2 n \pi+\alpha$ and $2 n \pi+\pi+$ α OE where α is $c^{\prime} \tan ^{-1}(1 / \sqrt{3})$. Condone degrees/decimals/mixture
	$x=2\left(n \pi+\frac{\pi}{6}+\frac{\pi}{4}\right) \quad\left(=2 n \pi+\frac{5 \pi}{6}\right)$	m1		Either correct rearrangement of $\frac{x}{2}-\frac{\pi}{4}=n \pi+\alpha$ to $x=\ldots$, or correct rearrangements of both the equivalents above in the M1 line involving $2 n \pi$, where α is $c^{\prime} s \tan ^{-1}(1 / \sqrt{3})$. Condone degrees/decimals/mixture
		A1	4	ACF, but must now be exact and in terms of π.
(b)	$\tan \left(\frac{x}{2}-\frac{\pi}{4}\right)= \pm \sqrt{\frac{1}{3}}$	M1		PI. Taking square roots, must include the \pm or evidence of its use
	$\begin{aligned} \tan \left(\frac{x}{2}-\frac{\pi}{4}\right)= & -\sqrt{\frac{1}{3}} \\ & \Rightarrow \frac{x}{2}-\frac{\pi}{4}=n \pi-\frac{\pi}{6} ; \end{aligned}$	m1		OE If not correct, ft on c 's working in (a) with c's α replaced by $-\alpha$. Condones as in ml above.
	$\begin{aligned} & x=2\left(n \pi+\frac{\pi}{6}+\frac{\pi}{4}\right), x=2\left(n \pi-\frac{\pi}{6}+\frac{\pi}{4}\right) \\ & \left\{x=2 n \pi+\frac{5 \pi}{6}, x=2 n \pi+\frac{\pi}{6}\right\} \end{aligned}$	A1F	3	Any valid form, but only ft on c 's exact value for $\tan ^{-1}(1 / \sqrt{3})$ in terms of π.
	Total		7	

Q	Solution	Marks	Total	Comments
7(a)	$y= \pm \frac{1}{3} x$	B1	1	ACF Need both
(b)	${ }^{y} \uparrow$	B1 B1		2-branch curve with branches in correct regions above and below x-axis Curve approaching asymptotes
		B1	3	Coords ($\pm 3,0$), as only points of intersection with coordinate axes, indicated. Condone -3 and +3 marked on x-axis at points of intersection as $(\pm 3,0)$ indicated.
(c)(i)	$\frac{(x+3)^{2}}{9}-y^{2}=1$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	$\begin{aligned} & \text { Replacing } x \text { by either } x+3 \text { or } x-3 \\ & \text { ACF } \end{aligned}$
(ii)	$\frac{(x+3)^{2}}{9}-x^{2}=1$	M1		Substitution into c's (c)(i) eqn of $y=x$ to eliminate y or of $x=y$ to eliminate x
	$x^{2}+6 x+9=9\left(x^{2}+1\right)$	A1F		Correct expansion of $(x \pm 3)^{2}$ equated to $9\left(x^{2}+1\right) \mathrm{OE} \mathrm{ft} ;$ [OE in y]
	$8 x^{2}-6 x=0 \quad\left(8 x^{2}=6 x\right)$	A1F		Ft on error $(x-3)$ for $(x+3)$ in (c)(i) which gives $8 x^{2}+6 x=0 \quad\left(8 x^{2}=-6 x\right)$ [OE in y]
	Points are $(0,0),\left(\frac{3}{4}, \frac{3}{4}\right)$	A1	4	Both. ACF
(d)		M1		Adding 3 to c's (c)(ii) two x-coords keeping y-coordinates unchanged.
	Points are (3,0), ($3 \frac{3}{4}, \frac{3}{4}$)	A1F	2	Ft on c's (c)(ii) coordinates for the two points If not deduced then M0A0
	Total		12	

Q	Solution	Marks	Total	Comments
9(a)	$\begin{array}{ll} \hline \text { Asymptotes } & x=1 \\ & y=1 \end{array}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	2	$\begin{array}{ll} \hline x=1 & \mathrm{OE} \\ y=1 & \mathrm{OE} \end{array}$
(b)	x	M1		Elimination of y PI by next line
	$\begin{aligned} & (-4 x+c)(x-1)=x \\ & -4 x^{2}+c x+4 x-c=x \\ & -4 x^{2}+c x+3 x-c=0 \end{aligned}$	A1		OE (denominators cleared)
	$4 x^{2}-(c+3) x+c=0$	A1	3	CSO AG No incorrect algebraic expressions etc
(c)(i)	Discriminant is $(c+3)^{2}-4(4 c)$	B1		OE
	For tangency $c^{2}-10 c+9=0$	M1		Forming a quadratic eqn in c after equating discriminant to zero
	$(c-9)(c-1)=0 \Rightarrow c=1, c=9$	A1	3	Correct values 1,9 for c.
(ii)	$\begin{aligned} & \underline{c=1}: 4 x^{2}-4 x+1=0 \\ & \underline{c=9}: 4 x^{2}-12 x+9=0 \end{aligned}$	M1		Substitutes at least one of c's values for c from (c)(i) either into the given quadratic in (b) OE or into $\frac{c+3}{8}$
	$4 x^{2}-4 x+1=0 \quad \Rightarrow \quad x=1 / 2 \quad(=0.5)$	A1		No other root from quadratic
	$4 x^{2}-12 x+9=0 \Rightarrow x=3 / 2 \quad(=1.5)$	A1		No other root from quadratic
	When $x=1 / 2, y=-1$; when $x=3 / 2, y=3$ $\left(\frac{1}{2},-1\right)\left(\frac{3}{2}, 3\right)$	A1	4	Accept in either format
	Total		12	
	TOTAL		75	

General Certificate of Education (A-level) June 2012

Mathematics

MFP1

(Specification 6360)

Further Pure 1

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

[^6]Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy E
mark is for explanation	

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

General Certificate of Education

MFP1 June 2012

Q	Solution	Marks	Total	Comments
				Accept correct equivalent decimals in place of some/all fractions in the scheme
1(a)	$\alpha+\beta=\frac{7}{5}(=1.4)$	B1		
	$\alpha \beta=\frac{1}{5}(=0.2)$	B1	2	
(b)	$\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}$	M1		OE eg $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{1 / 5[7(\alpha+\beta)-1-1]}{\alpha \beta}$ scores M1 m1
	$=\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha \beta}=\frac{\left(\frac{7}{5}\right)^{2}-2\left(\frac{1}{5}\right)}{\frac{1}{5}}$	m1		Correct expression for $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}$ in terms of either $(\alpha+\beta)$ and $\alpha \beta$ or with numerical substitution of correct/c's values from (a)
	$=\frac{\frac{49}{25}-2\left(\frac{1}{5}\right)}{\frac{1}{5}}=\frac{\frac{49}{25}-\frac{2}{5}}{\frac{1}{5}}=\frac{\frac{39}{25}}{\frac{1}{5}}=\frac{39}{5}$	A1	3	CSO AG must see some intermediate evaluation, must see one of the first three expressions A 0 if $\alpha+\beta$ has wrong sign
(c)	$\begin{aligned} & (\text { Sum }=) \alpha+\frac{1}{\alpha}+\beta+\frac{1}{\beta}=\alpha+\beta+\frac{\alpha+\beta}{\alpha \beta} \\ & \left.=\frac{7}{5}+\frac{\frac{7}{5}}{\frac{1}{5}}\right) \end{aligned}$	M1		Writing $\alpha+\frac{1}{\alpha}+\beta+\frac{1}{\beta}$ in a correct suitable form or with numerical values
	$\begin{aligned} & \text { (Product }=) \alpha \beta+\frac{\alpha}{\beta}+\frac{\beta}{\alpha}+\frac{1}{\alpha \beta} \\ & =\frac{1}{5}+\frac{39}{5}+5 \end{aligned}$	M1		Correct expression for product into which substitution of numbers attempted for all terms, at least one either correct/correct ft
	$\text { Sum }=\frac{42}{5}, \text { Product }=13$	A1		OE Both SC If B0 for $\alpha+\beta=-\frac{7}{5}$ in (a), and (c) $\mathrm{S}=-\frac{42}{5}$ oe, $\mathrm{P}=13$ award this A1
	$x^{2}-S x+P(=0)$	M1		Using correct general form of LHS of equation with ft substitution of c's S and P values. PI. M0 if either $S=\alpha+\beta$ or $P=\alpha \beta$ values
	Equation is $5 x^{2}-42 x+65=0$	A1	5	CSO Integer coefficients and ${ }^{\prime}=0$ ' needed. Dependent on B1B1 in (a) and previous 4 marks in (c) scored
	Total		10	

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline 2(a) \& \begin{tabular}{l}
\[
\begin{aligned}
\& y=x^{4}+x \\
\& \{y(-2+h)=\} \quad(-2+h)^{4}+(-2+h) \\
\& =h^{4}-8 h^{3}+24 h^{2}-32 h+16-2+h \\
\& =h^{4}-8 h^{3}+24 h^{2}-31 h+14 \\
\& \text { Gradient }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
\& =\frac{h^{4}-8 h^{3}+24 h^{2}-31 h+14-(14)}{-2+h-(-2)} \\
\& =\frac{h^{4}-8 h^{3}+24 h^{2}-31 h}{h}= \\
\& h^{3}-8 h^{2}+24 h-31
\end{aligned}
\] \\
As \(h \rightarrow 0\), gradient of line in (a) \(\rightarrow\) gradient of curve at point \((-2,14)\}\) \\
\{Gradient of curve at point \((-2,14)\) is \} -31
\end{tabular} \& \begin{tabular}{l}
M1 \\
B1 \\
A1F \\
M1 \\
A1 \\
E1 \\
E1
\end{tabular} \& 5

2 \& | $(-2+h)^{4}+(-2+h) \quad \mathrm{PI}$ |
| :--- |
| Correct expansion of $(-2+h)^{4}$ as $h^{4}-8 h^{3}+24 h^{2}-32 h+16 \text { PI }$ |
| Seen separately or as part of the gradient expression. Ft one incorrect term in expansion of $(-2+h)^{4}$ |
| Use of correct formula for gradient PI |
| The four correct terms in any order A0 if incorrect (constant/h) term ignored due printed form of answer |
| $\operatorname{Lim}\left[c^{\prime} s\left(p+q h+r h^{2}+h^{3}\right)\right]$ OE $h \rightarrow 0$ |
| NB ' $h=0$ ' instead of ' $h \rightarrow 0$ ' gets E0 Dependent on previous E1 and printed form of answer in (a) obtained convincingly but then ft on $\mathrm{c}^{\prime} \mathrm{s} p$ value |

\hline \& Total \& \& 7 \&

\hline 3(a)

(b) \& \begin{tabular}{l}
$$
\begin{aligned}
& \mathrm{i}(z+7)+3\left(z^{*}-\mathrm{i}\right)= \\
& \mathrm{i}(x+\mathrm{i} y+7)+3(x-\mathrm{i} y-\mathrm{i}) \\
& =\mathrm{i} x-y+7 \mathrm{i}+3 x-3 \mathrm{i} y-3 \mathrm{i} \\
& =3 x-y+\mathrm{i}(x-3 y+4)
\end{aligned}
$$
$$
\begin{aligned}
& 3 x-y=0, \quad x-3 y+4=0 \\
& x-9 x+4=0 \quad(\text { or eg } y-9 y+12=0)
\end{aligned}
$$

Solving to give $z=\frac{1}{2}+\frac{3}{2} \mathrm{i}$

 \&

M1

M1

A1

M1

A1

A1
\end{tabular} \& 3

3 \& | M1 for use of $z^{*}=x-\mathrm{i} y$ |
| :--- |
| M1 for $\mathrm{i}^{2} y=-y$ |
| If the five terms correct but not grouped into Real and Imaginary parts, allow A1 retrospectively provided the correct two expressions used in the M1 line in (b) |
| Attempting to equate all Real parts to zero and all Imaginary parts to zero A correct equation in either x or y PI by correct final answer |
| Allow $x=\frac{1}{2}, y=\frac{3}{2}$ |

\hline \& Total \& \& 6 \&

\hline
\end{tabular}

Q	Solution	Marks	Total	Comments
4	$\begin{aligned} & \sin \left(70^{\circ}-\frac{2}{3} x\right)=\cos 20^{\circ}=\sin 70^{\circ} \\ & \sin \left(70^{\circ}-\frac{2}{3} x\right)=\sin 110^{\circ} \\ & 70^{\circ}-\frac{2}{3} x=360 n^{\circ}+^{\prime \prime} 70^{\circ} \\ & 70^{\circ}-\frac{2}{3} x=360 n^{\circ}+110^{\circ} \\ & x=\frac{3}{2}\left(70^{\circ}-70^{\circ}-360 n^{\circ}\right) \\ & x=\frac{3}{2}\left(70^{\circ}-110^{\circ}-360 n^{\circ}\right) \end{aligned}$ $x=-540 n^{\circ} ; x=-540 n^{\circ}-60^{\circ}$	B1 B1 M1 m1 A2,1,0	\%	Watch out for the many correct different forms of the general solutions OE $\cos 20=\sin 70 ;$ or $\cos 20=\sin 110$ etc PI OE; Use of a correct angle, in degrees, in other relevant quadrant PI OE; Either one, showing a correct use of $360 n$ in forming a general solution. Condone $2 n \pi$ in place of $360 n$ Rearrangement of $70-\frac{2}{3} x=360 n+\alpha$ OE to $x=-\frac{3}{2}(\pm 360 n+\alpha-70) \mathrm{OE}$, where α is from c's $\sin \alpha=\cos 20$ Condone $2 n \pi$ in place of $360 n$ OE eg $540 n^{\circ}$, $540 n^{\circ}-60^{\circ}$. Condone $0 \pm 540 n$ for $\pm 540 n$. If not A2, award (i) A1 for either correct unsimplified full general solution or (ii) A1F for correct ft full general solution, ft c's wrong angle(s) after award of B0, may be left in unsimplified form(s) or (iii) A1 for 'correct' simplified full general solution but with radians present A0 for only a partial correct solution
	Total		6	

Q	Solution	Marks	Total	Comments
5(a)	Asymptotes $\begin{aligned} & x=-1 \\ & x=2 \\ & y=0 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	3	$\begin{array}{ll} x=-1 & \text { OE } \\ x=2 & \text { OE } \\ y=0 & \end{array}$
(b)	$\begin{aligned} & -\frac{1}{2}=\frac{x}{x^{2}-x-2} \Rightarrow x^{2}-x-2=-2 x \\ & x^{2}+x-2=0 \Rightarrow x=1, x=-2 \end{aligned}$	M1 A1	2	Correctly removing brackets and fractions to reach $x^{2}-x-2=-2 x$ OE Correct two values for x-coordinates. NMS 2 or 0 marks
(c)	$\left.\right\|^{y}$	M1		Three branches shown on sketch of C with either middle branch or outer two branches correct in shape
		A1		All three branches, correct shape and positions and approaching correct asymptotes in a correct manner. If middle branch does clearly not go through the origin, then A0
		B1	3	Correct sketch of line $(L), y=-0.5$ identified
(d)	$\begin{aligned} -2 & \leq x<-1 \\ 1 & \leq x<2 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$		Condone $<$ for \leq or vice versa Condone $<$ for \leq or vice versa
	$-2 \leq x<-1,1 \leq x<2$	B1	3	All complete and correct
	Total		11	

Q	Solution	Marks	Total	Comments
6(a)(b)(i)	$\left[\begin{array}{cc}-\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right]$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	If A1 not scored, award M1A0 for all correct entries expressed in trig form eg $\left[\begin{array}{cc} \cos 135 & -\sin 135 \\ \sin 135 & \cos 135 \end{array}\right]$
	$\begin{aligned} & \mathbf{M}=\left[\begin{array}{cc} -1 & -1 \\ 1 & -1 \end{array}\right]=\sqrt{2} \times\left[\begin{array}{cc} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{array}\right] \\ & =\left(=\left[\begin{array}{cc} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{array}\right]\left[\begin{array}{cc} \sqrt{2} & 0 \\ 0 & \sqrt{2} \end{array}\right]\right) \end{aligned}$	M1		Or better PI by cand. having both a correct scale factor of enlargement and a correct corresponding angle of rotation
	Scale factor of enlargement is $\sqrt{2}$ Angle of rotation is 135 (degrees anticlockwise)	A1 A1	3	$\mathrm{SF}=\sqrt{2} \quad \mathrm{OE}$ surd form Angle $=135$ OE eg -225 If M 0 give B 1 for $\mathrm{SF}=\sqrt{2} \mathrm{OE}$ surd and B 1 for angle $=135 \mathrm{OE}$
(b)(ii)	For $\mathbf{M}^{2}, \mathrm{SF}$ of enlargement $=2$ Angle of rotation is 270 (degrees anticlockwise)	B1F B1F	2	OE If incorrect, ft on $[\mathrm{c} \text { 's SF in (b)(i) }]^{2}$ OE, eg - 90(degrees), eg 90 (degrees) clockwise If incorrect, ft on $2 \times \mathrm{c}$'s angle in (b)(i) (neither B1F B1 nor B1 B1F is possible)
(iii)	$\begin{aligned} & \mathbf{M}^{2}=\left[\begin{array}{cc} -1 & -1 \\ 1 & -1 \end{array}\right]\left[\begin{array}{cc} -1 & -1 \\ 1 & -1 \end{array}\right]=\left[\begin{array}{cc} 0 & 2 \\ -2 & 0 \end{array}\right] \\ & \mathbf{M}^{4}=\left[\begin{array}{cc} 0 & 2 \\ -2 & 0 \end{array}\right]\left[\begin{array}{cc} 0 & 2 \\ -2 & 0 \end{array}\right]=\left[\begin{array}{cc} -4 & 0 \\ 0 & -4 \end{array}\right] \end{aligned}$	M1		For complete method (matrix calculation or geometrical reasoning) Matrix for \mathbf{M}^{2} could be seen earlier (M0 if >1 independent error in matrix multiplication) Geometrically $\mathrm{SF}=4$, rotation angle $=540$ OE scores M1 and completion scores A1
	$\mathbf{M}^{4}=-4\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right]=-4 \mathbf{I}$	A1	2	Either of these two forms convincingly shown
(iv)	$\begin{aligned} & \mathbf{M}^{2012}=\left(\mathbf{M}^{4}\right)^{503}=(-4 \mathbf{I})^{503}= \\ & -\left(2^{2}\right)^{503} \mathbf{I}=-2^{1006} \mathbf{I} \\ & \mathbf{M}^{2012}=-2^{1006} \mathbf{I} \end{aligned}$	$\begin{aligned} & \text { E1 } \\ & \text { B1 } \end{aligned}$	2	OE Fully explained, algebraically from $(-4 \mathbf{I})^{503}$, or geometrically $\mathrm{M}^{2012}=-2^{1006} \mathbf{I}(n=1006)$ (B0 if FIW)
	(Geometrically: \mathbf{M}^{2012} represents an enlargement with SF 2^{1006} followed by a rotation of angle $2012 \times 135^{\circ}$ ie 754.5 revolutions, being equivalent to rotation of 180° ie matrix is $-\mathbf{I}$ so $\mathbf{M}^{2012}=-2^{1006} \mathbf{I}$)			
	Total		11	

Q	Solution	Marks	Total	Comments
7(a)	Let $\mathrm{f}(\mathrm{x})=24 x^{3}+36 x^{2}+18 x-5$			
	$f(0.1)=-2.816, f(0.2)=0.232$	M1		Both attempted and at least one evaluated correctly to at least 1sf rounded or truncated OE fraction
	Change of sign so α lies between 0.1 and 0.2	A1	2	Need both evaluations correct to above degree of accuracy and 'change of sign OE' and relevant reference to 0.1 and 0.2
(b)	$\mathrm{f}(0.15)=-1.409(<0$ so root $>0.15)$	M1		$\mathrm{f}(0.15)$ considered first
	$f(0.175) \approx-0.619(<0 \text { so root }>0.175)$	A1		$f(0.15)$ then $f(0.175)$ both evaluated correctly to at least 1sf OE fractions
	α lies between 0.175 and 0.2	A1	3	Dependent on both previous marks gained and no other additional evaluations other than at 0.15 and 0.175
(c)	$\begin{aligned} & \mathrm{f}^{\prime}(x)=72 x^{2}+72 x+18 \\ & \left(x_{2}=\right) \end{aligned}$	B1		PI
	$0.2-\frac{24(0.2)^{3}+36(0.2)^{2}+18(0.2)-5}{}$	B1		B1 for numerator in correct formula
	$0.2-\frac{2(0.2)}{}{ }^{2}+72(0.2)+18$	B1		B1 for denominator in correct formula
	$=0.1934$ (to 4dp)	B1	4	CAO Must be 0.1934 Do not apply ISW NMS scores 0/4
	Total		9	

General Certificate of Education (A-level) January 2013

Mathematics

MFP1

(Specification 6360)

Further Pure 1

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy E
mark is for explanation	

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline 1 \& \[
\begin{aligned}
\& y_{n+1} \approx y_{n}+h \mathrm{f}\left(x_{n}\right) \\
\& h y^{\prime}(1)=0.1 \times y^{\prime}(1) \quad(=0.05) \\
\& y(1.1) \approx 3+0.05=3.05 \\
\& y(1.2) \approx y(1.1)+0.1 \times y^{\prime}(1.1)=3.05+0.1 \times y^{\prime}(1.1) \\
\& \approx 3.05+0.1 \times \frac{1.1}{1+1.1^{3}} \quad\left(=3.05+0.1 \times \frac{1100}{2331}\right) \\
\& \quad \approx 3.05+0.047(19 \ldots . .) \\
\& \quad \approx 3.0972 \quad(\text { to } 4 \mathrm{~d} . \mathrm{p} .)
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
m1 \\
A1F \\
A1
\end{tabular} \& 5 \& \begin{tabular}{l}
OE \\
Attempt to find \(h y^{\prime}(1)\). PI by eg 3.05 for \(y(1.1)\) \\
Attempt to find \(y(1+0.1)+0.1 \times y^{\prime}(1+0.1)\) must see evidence of calculation if correct \(\mathrm{ft}[0.047 . .+\mathrm{c}\) 's \(y(1.1)]\) value not obtained \\
OE; ft on [0.047..+c's \(y(1.1)]\) value; PI \\
Must be 4 dp .
\end{tabular} \\
\hline \& Total \& \& 5 \& \\
\hline 2(a)

(b)(i)

(ii) \& \[
\left.$$
\begin{array}{rl}
(w= & \frac{-6 \pm \sqrt{36-4(34)}}{2}\left\{=\frac{-6 \pm \sqrt{-100}}{2}\right\} \\
& =\frac{-6 \pm 10 \mathrm{i}}{2} \\
& =-3 \pm 5 \mathrm{i}
\end{array}
$$ \quad $$
\begin{array}{rl}
z=\mathrm{i}(1+\mathrm{i})(2+\mathrm{i})=\mathrm{i}\left(2+3 \mathrm{i}+\mathrm{i}^{2}\right)=2 \mathrm{i}+3 \mathrm{i}^{2}+\mathrm{i}^{3} \\
& =2 \mathrm{i}+3(-1)+\mathrm{i}(-1) \\
& =-3+\mathrm{i}
\end{array}
$$\right\} $$
\begin{aligned}
& z^{*}=-3-\mathrm{i} \\
&-3+\mathrm{i}+m(-3-\mathrm{i})=n \mathrm{i} \\
& \Rightarrow-3-3 m=0 ; \quad 1-m=n \\
& \Rightarrow m=-1, n=2
\end{aligned}
$$

\] \& | M1 |
| :--- |
| B1 |
| A1 |
| M1 |
| B1 |
| A1 |
| B1F |
| M1 |
| A1 | \& 3

3
3

3 \& | Correct substitution into quadratic formula OE $\begin{aligned} & \sqrt{-100}=10 \mathrm{i} \text { or } \sqrt{-100} / 2=5 \mathrm{i} \\ & -3 \pm 5 \mathrm{i} \quad(p=-3, q= \pm 5) \end{aligned}$ $\text { NMS mark as } 3 / 3 \text { or } 0 / 3$ |
| :--- |
| Attempt to expand all brackets. |
| $\mathrm{i}^{2}=-1$ used at least once $-3+\mathrm{i} \quad(a=-3, b=1)$ |
| OE Ftc's $a-b i$ |
| Equating both real parts and the imag. parts, PI by next line Both correct |

\hline \& Total \& \& 9 \&

\hline
\end{tabular}

Q	Solution	Marks	Total	Comments
3(a)	$\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}$	B1		OE (PI) Stated or used. A correct angle in $1^{\text {st }}$ or $2^{\text {nd }}$ quadrant for $\sin ^{-1}(\sqrt{3} / 2)$.
	$\sin \frac{2 \pi}{3}=\frac{\sqrt{3}}{2}$	B1F		OE (PI) Stated or used. A correct ft angle in remaining quadrant for $\sin ^{-1}(\sqrt{3} / 2)$. B0F if angle used is in an incorrect quadrant
	$2 x+\frac{\pi}{4}=2 n \pi+\frac{\pi}{3} ; \quad 2 x+\frac{\pi}{4}=2 n \pi+\frac{2 \pi}{3}$	M1		OE Either. Ft on c's $\sin ^{-1}(\sqrt{3} / 2)$.
	$x=\frac{1}{2}\left(2 n \pi+\frac{\pi}{3}-\frac{\pi}{4}\right) ; \quad x=\frac{1}{2}\left(2 n \pi+\frac{2 \pi}{3}-\frac{\pi}{4}\right)$	m1		Either. Correct rearrangement of $2 x+\frac{\pi}{4}=2 n \pi+\alpha$ to $x=\ldots$, where α is c's $\sin ^{-1}(\sqrt{3} / 2)$.
	GS: $\quad x=n \pi+\frac{\pi}{24} ; \quad x=n \pi+\frac{5 \pi}{24}$	A2,1,0	6	Both in ACF, but must now be exact and in terms of π for A2. A1 if decimal approx used.
(b)	$n=5(\text { gives greatest soln }<6 \pi)=5 \pi+\frac{5 \pi}{24}$	M1		Applying a correct value for n which gives greatest soln. $<6 \pi$ for c's GS dep on GS, using above method, having two expressions of the form $n \pi+\lambda$, for different λ and ml scored in (a).
	$=\frac{12 J \pi}{24}$	A1	2	Dep on correct full GS.
	Total		8	
4	$\int \frac{1}{x \sqrt{x}} \mathrm{~d} x=\int x^{-\frac{3}{2}}(\mathrm{~d} x)$	M1		$\int x^{-\frac{3}{2}} \mathrm{PI}$
	$=-2 x^{-\frac{1}{2}}(+c)$	A1		ACF, can be unsimplified. Condone absence of $+c$
	$-2 x^{-\frac{1}{2}} \rightarrow 0 \text { as } x \rightarrow \infty$	E1		OE Ft on $k x^{-n}, n>0$
	$\int_{25}^{\infty} \frac{1}{x \sqrt{x}} \mathrm{~d} x=\frac{2}{5}$	A1	4	
	Total		4	

Q	Solution	Marks	Total	Comments
5(a)	$\alpha+\beta=-2$	B1		
	$\alpha \beta=-5$	B1	2	
(b)	$\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta=(-2)^{2}-2(-5)$	M1		OE Using correct identity for $\alpha^{2}+\beta^{2}$ with ft or correct substitution
	$=14$	A1	2	CSO A0 if $\alpha+\beta$ has wrong sign
(c)	$\alpha^{3} \beta+\alpha \beta^{3}=\alpha \beta\left(\alpha^{2}+\beta^{2}\right)$	M1		PI Seen at least once in part (c). OE eg $\alpha^{3} \beta+\alpha \beta^{3}=\alpha \beta\left[(\alpha+\beta)^{2}-2 \alpha \beta\right]$
	$S(\mathrm{um})=\alpha^{3} \beta+\alpha \beta^{3}+2=(-5)(14)+2=-68$	A1F		Correct or ft c 's $\alpha \beta \times \mathrm{c}$'s [answer (b)] +2
	$\begin{aligned} P(\text { roduct }) & =(\alpha \beta)^{4}+\alpha^{3} \beta+\alpha \beta^{3}+1 \\ & =(-5)^{4}+(-5)(14)+1=556 \end{aligned}$	A1F		$\begin{aligned} & \text { Correct or } \\ & \mathrm{ft}[\mathrm{c} \text { 's } \alpha \beta]^{4}+\mathrm{c} \text { 's } \alpha \beta \times \mathrm{c} \text { 's }[\text { answer (b)] }+1 \end{aligned}$
	$x^{2}-S x+P(=0)$	M1		Using correct general form of LHS of eqn with ft substitution of c's S and P values.
	Eqn.: $x^{2}+68 x+556=0$	A1	5	CSO ACF
	Total		9	

Q	Solution	Marks	Total	Comments
6(a)(i)	$\mathbf{X}^{2}=\left[\begin{array}{ll}7 & 2 \\ 3 & 6\end{array}\right] ; \quad(m=) 7$	B1	1	($m=$)7 or 7 as top left element of \mathbf{X}^{2}
(ii)	$\mathbf{X}^{3}=\left[\begin{array}{cc}13 & 14 \\ 21 & 6\end{array}\right] ;$	M1		At least 2 elements correct
	$7 \mathbf{X}=\left[\begin{array}{cc}7 & 14 \\ 21 & 0\end{array}\right]$	B1		PI
	$\mathbf{X}^{3}-7 \mathbf{X}=\left[\begin{array}{cc} 13-7 & 14-14 \\ 21-21 & 6-0 \end{array}\right]=\left[\begin{array}{ll} 6 & 0 \\ 0 & 6 \end{array}\right]$	A1F		Ft on c's m value
	$=6\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right]=6 \mathbf{I}$	A1	4	CSO Accept either form but at least one must be shown explicitly
(b)(i)(ii)	Reflection in the x-axis	B1	1	OE
	$\mathbf{B}=\left[\begin{array}{cc} \cos 45^{\circ} & -\sin 45^{\circ} \\ \sin 45^{\circ} & \cos 45^{\circ} \end{array}\right]=\left[\begin{array}{cc} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{array}\right]$	M1		Either OE. For M mark, accept dec. equiv. (at least 3 sf) for $\frac{1}{\sqrt{2}}$
	$=\frac{1}{\sqrt{2}}\left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array}\right]$	A1	2	NMS SC1 for $k=\frac{1}{\sqrt{2}}$ or better.
(iii)	$\mathbf{A B}\left[\begin{array}{c} -1 \\ 2 \end{array}\right]=k\left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right]\left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array}\right]\left[\begin{array}{c} -1 \\ 2 \end{array}\right]$	M1		Attempt to find $\mathbf{A B}\left[\begin{array}{c}-1 \\ 2\end{array}\right]$
	$=k\left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right]\left[\begin{array}{c} -3 \\ 1 \end{array}\right] \quad\left\{\text { or } k\left[\begin{array}{cc} 1 & -1 \\ -1 & -1 \end{array}\right]\left[\begin{array}{c} -1 \\ 2 \end{array}\right]\right\}$	A1		Either $\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]\left[\begin{array}{c}-1 \\ 2\end{array}\right]=\left[\begin{array}{c}-3 \\ 1\end{array}\right]$ or $\left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right]\left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array}\right]=\left[\begin{array}{cc} 1 & -1 \\ -1 & -1 \end{array}\right]$
	$=k\left[\begin{array}{l} -3 \\ -1 \end{array}\right]$	m1		Completing the matrix mult. to reach a 2×1 matrix
	(Image of P is the point) $\quad\left(-\frac{3}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$	A1	4	CSO SC Wrong order, works with BA $\left[\begin{array}{c}-1 \\ 2\end{array}\right]$, mark out of a max of M1A0 m1A0
	Total		12	

Q	Solution	Marks	Total	Comments
9(a)	$y=0, \frac{(x-4)^{2}}{4}=1 ; \quad(x-4)^{2}=4$	M1		OE Sub $y=0$ in eqn of ellipse and either eliminate fraction or take sq root, condoning missing \pm, ie $\frac{(x-4)}{2}=(\pm) 1$
	$\Rightarrow x=2,6\left(x_{A}=2, x_{B}=6\right)$	A1	2	Both 2 and 6 NMS Mark as B2 or B0
(b)(i)	$\frac{(x-4)^{2}}{1}+(m x)^{2}=1 \quad \Rightarrow$	M1		Substitute $y=m x$ to eliminate y
	$\begin{aligned} & (x-4)^{2}+4(m x)^{2}=4 \Rightarrow x^{2}-8 x+16+4(m x)^{2}=4 \\ & \Rightarrow x^{2}-8 x+16+4 m^{2} x^{2}-4=0 \\ & \Rightarrow\left(1+4 m^{2}\right) x^{2}-8 x+12=0 \end{aligned}$	A1 A1	3	Eliminate fractions correctly and expand $(x-4)^{2}$ correctly CSO AG
	Discriminant $b^{2}-4 a c\left\{(-8)^{2}-4\left(1+4 m^{2}\right)(12)\right\}$	M1		$b^{2}-4 a c$ in terms of m condone one sign or copying error OE
	For tangency, $(-8)^{2}-4\left(1+4 m^{2}\right)(12)=0$	A1		A correct equation with m^{2} being the only unknown at any stage.
	$192 m^{2}-16(=0)$	A1		OE eg $12 m^{2}-1(=0)$ OE PI by a correct value for m condoning wrong sign
	$(m>0 \text { so }) \quad m=\frac{1}{\sqrt{12}}$	A1	4	ACF of an exact value for m eg $\frac{1}{2 \sqrt{3}}, \frac{\sqrt{3}}{6}$. Dep on prev 3 mrks
(iii)	$\begin{aligned} & \left(1+4 \times\left\{\frac{1}{\sqrt{12}}\right\}^{2}\right) x^{2}-8 x+12(=0) \\ & \frac{4}{3} x^{2}-8 x+12=0 ; \\ & 4 x^{2}-24 x+36=0 \\ & \quad x^{2}-6 x+9=0 \\ & x=\frac{-(-8) \pm \sqrt{0}}{\frac{8}{3} ;} \end{aligned}$ $x=3$ Coordinates of P are $\quad\left(3, \frac{3}{\sqrt{12}}\right)$	M1		Subst value for m in LHS of eqn (b)(i); ft on c's value of m.
		m1		Valid method to solve a correct quadratic equation; as far as either correct subst into quadratic formula with $b^{2}-4 a c$ evaluated to 0 or correct factorisation or correct value of x after $\frac{4}{3} x^{2}-8 x+12=0$ or better seen.; OE, correct use of $-b / 2 a$
		A1		Must see earlier justification Correct coordinates with the
		A1	4	Correct coordinates with the y-coord in any correct exact form eg $\frac{\sqrt{3}}{2}$.
				NMS SC 1 for $\left(3, \frac{3}{\sqrt{12}}\right)$
	Total		13	
	TOTAL		75	

General Certificate of Education (A-level) June 2013

Mathematics

MFP1

(Specification 6360)

Further Pure 1

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk
Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy E
mark is for explanation	

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1	$\left.\begin{array}{l} \left(x_{2}=\right) 10-\frac{\left(10^{3}-10^{2}+4 \times 10-900\right)}{\left(3 \times 10^{2}-2 \times 10+4\right)} \\ \left(=10-\frac{1000-100+40-900}{300-20+4}\right) \\ =10-\frac{40}{284}=10-0.1408 \ldots \end{array}\right) .$	B1 B1 B1	3	$10-\frac{\mathrm{f}(10)}{\mathrm{f}^{\prime}(10)}$ with a correct numerical expression or value PI for $\mathrm{f}(10)$. $10-\frac{\mathrm{f}(10)}{\mathrm{f}^{\prime}(10)}$ with a correct numerical expression or value PI for $\mathrm{f}^{\prime}(10)$. Must be 9.859
	Total		3	
$2(a)(\mathbf{i})$ (ii) (b)	$\left.\left.\begin{array}{l} \mathbf{A}-\mathbf{B}=\left[\begin{array}{cc} p-3 & 1 \\ 2 & p-3 \end{array}\right] \\ \mathbf{A B}=\left[\begin{array}{ll} p & 2 \\ 4 & p \end{array}\right]\left[\begin{array}{ll} 3 & 1 \\ 2 & 3 \end{array}\right]=\left[\begin{array}{cc} 3 p+4 & p+6 \\ 12+2 p & 4+3 p \end{array}\right] \\ \mathbf{A}-\mathbf{B}+\mathbf{A B}=\left[\begin{array}{cc} 4 p+1 & p+7 \\ 14+2 p & 1+4 p \end{array}\right] \\ \mathbf{A}-\mathbf{B}+\mathbf{A B}=k \mathbf{I}=k\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right] \\ (p+7=0,14+2 p=0 \end{array}\right]\right) p=-7 .$	B1 M1 A1 B1F B1 B1 B1	1	Finding AB and at least 2 elements correct CSO Only ft if all matrices are 2 by 2 PI by later correct work I used as or equated to $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ at some stage $p=-7$ provided it gives the relevant two zero elements CSO Either - 27 (no earlier errors) for B1 OR $k=-27$ with either $\left[\begin{array}{cc}-27 & 0 \\ 0 & -27\end{array}\right]$ or $27\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$ or $-27\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ seen before (no earlier errors) for B1
	Total		7	

Q	Solution	Marks	Total	Comments
6(a)	$\begin{aligned} & \alpha+\beta=-\frac{3}{2} \\ & \alpha \beta=-3 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	$\begin{aligned} & \mathrm{OE} \\ & \mathrm{OE} \end{aligned}$
(b)	$\alpha^{3}+\beta^{3}=(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)$	M1		Using correct identity for $\alpha^{3}+\beta^{3}$ in terms of $\alpha+\beta$ and $\alpha \beta$.
(c)	$\begin{aligned} & =\left(-\frac{3}{2}\right)^{3}-3(-3)(-3 / 2) \\ & =-\frac{27}{8}-\frac{27}{2}=-\frac{135}{8} \end{aligned}$	A1F A1	3	with ft /or correct substitution CSO AG. Correct evaluation of each of $(-1.5)^{3}$ and $-3(-3)(-1.5)$ must be seen before the printed answer is stated
	$\begin{aligned} \text { Sum } & =\alpha+\frac{\alpha}{\beta^{2}}+\beta+\frac{\beta}{\alpha^{2}} \\ & =\alpha+\beta+\frac{\alpha^{3}+\beta^{3}}{(\alpha \beta)^{2}}=-\frac{3}{2}+\frac{-135 / 8}{9} \end{aligned}$	M1		Writing $\alpha+\frac{\alpha}{\beta^{2}}+\beta+\frac{\beta}{\alpha^{2}}$ in a suitable form with $\mathrm{ft} /$ or correct substitution
	$\begin{aligned} & \text { Sum }=-\frac{27}{8} \\ & \text { Product }=\alpha \beta+\frac{\beta}{\alpha}+\frac{\alpha}{\beta}+\frac{1}{\alpha \beta} \end{aligned}$	A1		PI OE exact value eg -3.375 (A0 if $\alpha \beta=3$ used to get $(\alpha \beta)^{2}=9$)
	$\begin{gather*} =\alpha \beta+\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}+\frac{1}{\alpha \beta} \quad\left({ }^{*}\right) \tag{*}\\ \text { Now } \alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta \\ \left(=\frac{9}{4}+6\right) \end{gather*}$	M1		(*) OE with correct identity for $\alpha^{2}+\beta^{2}$ used in (c). Subst of values not required but PI by correct value of Product
	$\text { Product }=-3-\frac{1}{3}\left(\frac{9}{4}+6\right)-\frac{1}{3}=-\frac{73}{12}$	A1		PI OE exact value
	$x^{2}-S x+P(=0)$	M1		Using correct general form of LHS of eqn with ft substitution of c's S and P values.
	Eqn is $24 x^{2}+81 x-146=0$	A1	6	OE but integer coefficients and ' $=0$ ' needed
	Total		11	

Q	Solution	Marks	Total	Comments
7(a)	$\begin{aligned} & \mathrm{f}(x)=4 x^{3}-x-540000 \\ & \mathrm{f}(51)=-9447 \quad(<0) ; \quad \mathrm{f}(52)=22380(>0) \end{aligned}$ Since sign change (and f continuous), $51<\alpha<52$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	$f(51)$ and $f(52)$ both considered All values and working correct plus relevant concluding statement involving ' 51 ' and ' 52 '.
(b)(i)	$\begin{aligned} S_{n} & =\sum_{r=1}^{n}(2 r-1)^{2}=\sum 4 r^{2}-\sum 4 r+\sum 1 \\ & =4 \frac{n}{6}(n+1)(2 n+1)-4 \frac{n}{2}(n+1)+\sum_{r=1}^{n} 1 \\ & =4 \frac{n}{6}(n+1)(2 n+1)-4 \frac{n}{2}(n+1)+n \\ & =\frac{n}{3}\left[2\left(2 n^{2}+3 n+1\right)-6(n+1)+3\right]=\frac{n}{3}\left[4 n^{2}-1\right] \end{aligned}$	M1		Splitting up the sum into separate sums. PI by ml line below or better
		m1 B1 A1		Substitution of correct formulae from FB for the two summations B1 for $\sum_{r=1}^{n} 1=n$ stated or used
		A1	5	CSO
(ii)	$\left(6 S_{n}=2 n\left[4 n^{2}-1\right]\right)=2 n(2 n-1)(2 n+1)$	B1		Terms in any order
	$(2 n-1), 2 n$ and $(2 n+1)$ are consecutive integers	E1	2	Terms must be identified and statement 'consecutive integers'
(c)	$S_{n}=1^{2}+3^{2}+5^{2}+\ldots+(2 n-1)^{2} \quad$ ie sum of squares of first n odd numbers so need least N such that $S_{N}>180000$			
	$S_{52}=\frac{52}{3}\left[4 \times 52^{2}-1\right]=187460 \text { and } S_{51}=176851$	M1		Either $\frac{n}{3}\left[4 n^{2}-1\right]=180000$ or $2 N(2 N-1)(2 N+1)=1080000$ or S_{52} and S_{51} both attempted (or $=$ replaced by $>$ or by \geq)
	Smallest value of N is 52	A1	2	CSO Fully and correctly justified. NMS $N=52$ scores $0 / 2$
	Total		11	

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments

\hline 8(a) \& $$
\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right]
$$ \& M1

A1 \& 2 \& Matrix in form $\left[\begin{array}{ll}\lambda & 0 \\ 0 & \mu\end{array}\right]$, where $\lambda \neq 0, \mu \neq 0$ and $\lambda \neq \mu$

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right]
$$

\hline \multirow[t]{2}{*}{(b)(i)} \& \multirow[t]{2}{*}{| $y=\sqrt{3} x=\tan 60^{\circ} x \quad\left[\begin{array}{cc} \cos 120^{\circ} & \sin 120^{\circ} \\ \sin 120^{\circ} & -\cos 120^{\circ} \end{array}\right]$ |
| :--- |
| Required matrix is $\left[\begin{array}{cc}-\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right]$ |} \& M1 \& \& | $\left[\begin{array}{cc} \cos 120 & \sin 120 \\ \sin 120 & -\cos 120 \end{array}\right] \text { PI }$ |
| :--- |
| For M mark, condone dec approx 0.86 or 0.87 or better in place of $\sin 120^{\circ}$ |

\hline \& \& A1 \& 2 \& OE but must be in exact surd form.

\hline (ii) \& $$
\left[\begin{array}{cc}
-\frac{1}{2} & \frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right]=
$$ \& M1 \& \& Attempt to multiply c's (b)(i) 2by2 matrix and c's (a) 2by 2 matrix in correct order.

\hline \& $$
=\left[\begin{array}{cc}
-\frac{1}{2} & \frac{3 \sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{3}{2}
\end{array}\right]
$$ \& A1 \& 2 \& OE but must be in exact surd form.

\hline \& Total \& \& 6 \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline 9(a) \& \begin{tabular}{l}
(HA) \(y=1\) \\
(VA)
\[
\begin{aligned}
\& x^{2}-2 x-3=0 \quad(x-3)(x+1)=0 \\
\& x=-1 \text { and } x=3
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
A1
\end{tabular} \& 3 \& \begin{tabular}{l}
\[
y=1 \quad \mathrm{OE} \text { eqn }
\] \\
PI OE eg use of quadratic formula \\
Both needed OE eqn(s)
\end{tabular} \\
\hline \multirow[t]{3}{*}{(b)(i)

(ii)} \& $$
\begin{aligned}
& k=\frac{x^{2}-2 x+1}{x^{2}-2 x-3} \Rightarrow k x^{2}-2 k x-3 k=x^{2}-2 x+1 \\
& k x^{2}-2 k x-3 k-x^{2}+2 x-1=0 \\
& (k-1) x^{2}-2(k-1) x-(3 k+1)=0
\end{aligned}
$$ \& B1 \& 1 \& AG Must see the two stages, correct elimination of fraction and a correct rearrangement to $\ldots=0$, along with correct elimination of brackets before printed answer is stated.

\hline \& Discriminant $b^{2}-4 a c\left\{4(k-1)^{2}+4(k-1)(1+3 k)\right\}$ \& M1 \& \& $b^{2}-4 a c, \mathrm{OE}$, in terms of k; condoning one minor error in substitution.

\hline \& Line intersects curve $\Rightarrow b^{2}-4 a c \geq 0$

$$
\begin{aligned}
& \Rightarrow 4(k-1)^{2}+4(k-1)(1+3 k) \geq 0 \\
& \Rightarrow 4(k-1)[k-1+1+3 k] \geq 0, \quad 16 k(k-1) \geq 0
\end{aligned}
$$

$$
\text { ie } k^{2}-k \geq 0
$$ \& A1

A1 \& 3 \& | A correct inequality where k is the only unknown |
| :--- |
| CSO AG Must be convinced |

\hline \multirow[t]{3}{*}{(iii)} \& | $k^{2}-k \geq 0, \quad k(k-1) \geq 0$ |
| :--- |
| $k \leq 0, \quad k \geq 1 \quad$ Critical values $k=0, \quad(k=1)$ |
| $k \neq 1$ since there is no point on the curve where $y=1$ $\left(x^{2}-2 x-3 \neq x^{2}-2 x+1\right)$ | \& B1

E1 \& \& | For $k=0$ either as an equation or inequality. |
| :--- |
| OE Valid explanation, with no accuracy errors, to discount $k=1$ |

\hline \& $$
k=0, \quad-x^{2}+2 x-1=0 \quad \text { or } \quad y=0, \quad x^{2}-2 x+1=0
$$ \& M1 \& \& OE

\hline \& (Only one) stationary point (and its coordinates are) $(1,0)$ \& A1 \& 4 \& 'stationary' with either $(1,0)$ or $\{x=1, y=0\}$

\hline \multirow[t]{3}{*}{(c)} \& \& B1 \& \& Curve with three distinct branches

\hline \& \& B1 \& \& Branch between VAs, correct shape, no part of the branch above the x-axis, only intersection with y-axis at a point below the origin, and its max pt on the positive x-axis

\hline \& \& B1 \& 3 \& Fully correct curve drawn with each branch correctly approaching its relevant asymptotes

\hline \& Total \& \& 14 \&

\hline \& TOTAL \& \& 75 \&

\hline
\end{tabular}

AQA

A-LEVEL MATHEMATICS

Further Pure 1 - MFP1
Mark scheme

6360
June 2014

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Vorft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Mark	Total	Comment
1	$\begin{aligned} & \begin{aligned} & h y^{\prime}(9)=0.25 \times \frac{1}{2+\sqrt{9}}(=0.05) \\ &\{y(9.25)\} \approx 6+0.05=6.05 \end{aligned} \\ & \left\{\begin{aligned} \{y(9.5)\} & \approx y(9.25)+0.25 \times y^{\prime}(9.25) \\ & \approx 6.05+0.25 \times \frac{1}{2+\sqrt{9.25}} \\ & \approx 6.05+0.25 \times 0.1983(5 \ldots) \\ & \approx 6.05+0.0495(8 \ldots . .) \\ y(9.5)= & 6.0996 \quad \text { (to } 4 \text { d.p.) } \end{aligned}\right. \end{aligned}$	M1 A1 m1 A1F A1	5	Attempt to find $h y^{\prime}(9)$. 6.05 OE Attempt to find $y(9.25)+0.25 \times y^{\prime}(9.25)$, must see evidence of numerical expression if correct $\mathrm{ft}[0.049(5 .)+$.c 's $y(9.25)]$ value is not obtained. PI; ft on c's value for $y(9.25) ; 4 \mathrm{dp}$ value (rounded or truncated) or better. $y(9.5)=6.0996$
	Total		5	
	In this Q1, misreads lose all those A marks that are affected.			

Q	Solution	Mark	Total	Comment
2(a) (b)(i)	$\begin{aligned} & \alpha+\beta=-4 ; \quad \alpha \beta=\frac{1}{2} \\ & \alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta \end{aligned}$	B1; B1 M1	2	Answers - 4 \& $1 / 2$ with LHS missing, look for later evidence before awarding B1B1 PI
(b)(ii)	$=16-1=15$	A1	2	CSO
	$\alpha^{4}+\beta^{4}=\left(\alpha^{2}+\beta^{2}\right)^{2}-2 \alpha^{2} \beta^{2}$	M1		OE identity enabling direct substitution.
	$=225-2 \times \frac{1}{4}=225-\frac{1}{2}=\frac{449}{2}$	A1	2	CSO AG Must see evaluations (eg as indicated by either of these two alternatives) before the printed answer.
(c)	$\mathrm{S}=2\left(\alpha^{4}+\beta^{4}\right)+\frac{\alpha^{2}+\beta^{2}}{\alpha^{2} \beta^{2}}$	M1		OE identity enabling direct substitution, seen or used.
	$\mathrm{P}=4 \alpha^{4} \beta^{4}+2\left(\alpha^{2}+\beta^{2}\right)+\frac{1}{\alpha^{2} \beta^{2}}$	M1		OE identity enabling direct substitution, seen or used.
	$\mathrm{S}=509, \quad \mathrm{P}=\frac{137}{4}(=34.25)$	A1F		Both values correct; ft only on $\alpha+\beta=4$
	Quadratic is $x^{2}-509 x+34.25(=0)$	M1		$x^{2}-S x+P \mathrm{ft}$ c's vals for S and P . M0 if either $S=\alpha+\beta$ or $P=\alpha \beta$ values
	$4 x^{2}-2036 x+137=0$	A1F	5	ACF of the equation, but must have integer coefficients; ft only on $\alpha+\beta=4$
	Total		11	
Alt (b)(ii)	$\alpha^{4}+\beta^{4}=(\alpha+\beta)^{4}-4 \alpha \beta\left(\alpha^{2}+\beta^{2}\right)-6 \alpha^{2} \beta^{2}(\mathrm{M} 1)=256-4 \times \frac{15}{2}-6 \times \frac{1}{4}=256-30-\frac{3}{2}=\frac{449}{2}(\mathrm{~A} 1) \mathrm{AG}$ Cand whose only error is $\alpha+\beta=4$ in (a) can score B0B1; M1A0; M1A0; 5			

Q	Solution	Mark	Total	Comment
3	$\begin{aligned} & \sum_{r=3}^{60} r^{2}(r-6)=\sum_{r=3}^{60} r^{3}-6 \sum_{r=3}^{60} r^{2} \\ & =\sum_{r=1}^{60} r^{3}-6 \sum_{r=1}^{60} r^{2}-\left[\sum_{r=1}^{2} r^{3}-6 \sum_{r=1}^{2} r^{2}\right] \\ & =\sum_{r=1}^{60} r^{3}-6 \sum_{r=1}^{60} r^{2}-[9-30] \\ & =\frac{1}{4}(60)^{2}(61)^{2}-6 \frac{1}{6}(60)(61)(2 \times 60+1)+21 \end{aligned}$ $=3348900-442860+21=2906061$	M1	4	$\sum r^{2}(r-6)=\sum r^{3}-6 \sum r^{2}$ seen or used B1 for $\left[\sum_{r=1}^{2} r^{3}-6 \sum_{r=1}^{2} r^{2}\right]=9-30$ OE PI Substitution of $n=60$ into either (i) the correct formula $\sum_{r=1}^{n} r^{3}$ or (ii) the correct formula for $\sum_{r=1}^{n} r^{2}$ or (iii) the c's rearrangement of $\frac{1}{4} n^{2}(n+1)^{2}-6 \frac{n}{6}(n+1)(2 n+1)$ 2906061 NMS Answer only of 2906061 scores 0/4
	Total		4	
	Cand who works with Q as $\sum_{r=1}^{60} r^{2}(r-6)$ can score max of M1B0M1A0 Condone notation $\sum_{1}^{60} r^{3}$ for $\sum_{r=1}^{60} r^{3}$ etc SC : Let $s=r-2 ; \quad \sum_{r=3}^{60} r^{2}(r-6)=\sum_{s=1}^{58}(s+2)^{2}(s-4)=\sum_{s=1}^{58} s^{3}-12 \sum_{s=1}^{58} s-16 \sum_{s=1}^{58} 1$ (M1 relevant split following expn of $(s+2)^{2}(s-4)$ into the form $a s^{3}+\left(b s^{2}+\right) c s+d$, ft wrong coeffs provided at least 3 non-zero coefficients.) $=\frac{1}{4}(58)^{2}(59)^{2}-12 \frac{1}{2}(58)(59)-16(58) \quad$ (M1 Substitution of $n=58$ into correct formula for either $\sum_{s=1}^{n} s^{3}$ or $\sum_{s=1}^{n} s$) (B1 for $\left.16 \sum_{s=1}^{58} 1=16(58) \quad(=928)\right)$ $\begin{equation*} =2927521-20532-928=2906061 \tag{A1} \end{equation*}$			

Q	Solution	Mark	Total	Comment
4	$5 \mathrm{i}(a+b \mathrm{i})+3(a-b i)+16=8 \mathrm{i}$	M1		Use of $z^{*}=a-b$ i for $z=a+b$ i OE
	$5 a \mathrm{i}-5 b+3(a-b i)+16=8 \mathrm{i}$	M1		Use of $\mathrm{i}^{2}=-1$
	$5 a \mathrm{i}-5 b+3 a-3 b \mathrm{i}+16=8 \mathrm{i}$	A1		$5 a \mathrm{i}-5 b+3 a-3 b \mathrm{i}+16=8 \mathrm{i} \quad$ OE PI
	$3 a-5 b+16=0, \quad 5 a-3 b=8$	M1		Equating both the real parts and the imag. parts for the c's eqn.
	$16 b=104(\text { or } 16 a=88 \text { etc })$	A1		Correct elimination of either a or b from two correct equations involving a and b. OE PI
	$(z=) \frac{11}{2}+\frac{13}{2} \mathrm{i}$	A1	6	ACF isolated, not embedded.
	Total		6	

Q	Solution	Mark	Total	Comment
5 (a)	$\begin{aligned} & \{y(-5+h)=\} \quad(-5+h)(-5+h+3) \\ & \text { Gradient }=\frac{(-5+h)(-2+h)-10}{-5+h-(-5)} \\ & =\frac{-7 h+h^{2}}{h}=-7+h \end{aligned}$ As $h \rightarrow 0,\{\mathrm{grad}$ of line in (a) \rightarrow grad of curve at point $(-5,10)\}$ $\{$ Gradient of curve at point $(-5,10)=\}-7$	M1 M1 A1 E1 A1F	3 2	Attempt to find y when $x=-5+h \quad$ PI Use of gradient $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ OE to obtain an expression in terms of h. CSO $-7+h$ or $h-7$ $\operatorname{Lim}\left[c^{\prime} s(a+b h)\right] \quad \mathrm{OE}$ $h \rightarrow 0$ NB ' $h=0$ ' instead of ' $h \rightarrow 0$ ' gets E0 ft on c's a value only if both Ms have been scored in part (a) and $a+b h$ has been obtained convincingly. Final answer must be -7 not ${ }^{\text {' }} \rightarrow-7$ OE'
	Total		5	
(b) (b)	Note: $\mathrm{E} 0, \mathrm{~A} 1 \mathrm{~F}$ is possible. OE wording for ' \rightarrow ' eg 'tends to', 'approaches', 'goes towards'. Do NOT accept ' $=$ '.			

Q	Solution	Mark	Total	Comment
6 (a)	$x=0, \quad x=-2, \quad y=0$	B2,1,0	2	$\mathrm{OE}(\mathrm{eg} x+2=0) \mathrm{B} 1$ for two correct.
(b)(i)	$(y=)-1$	B1	1	
(b)(ii)		M1		Three branches shown on sketch of C with either middle branch or outer two branches correct in shape.
		A1	2	All three branches, correct shape and positions and approaching correct asymptotes in a correct manner.
(c)	Critical values: $(x+4)(x-2)=0$	M1		PI Valid method to find critical values. Condone corresponding inequality. Alternatives must reach an equivalent stage where critical values can be stated.
	Critical values are $x=-4, x=2$	A1		Both correct with no extras remaining. Seen or used.
	$x \leq-4, \quad x \geq 2$	B1		Both inequalities
	$-2<x<0$	B2,1,0	5	B1 if either or both ' $<$ ' replaced by ' \leq '
	Total		10	
(a)	Must be equations. If more than 3 equations	deduct 1	mark for	each extra to a minimum of B0

Q	Solution	Mark	Total	Comment
7(a)(i)	$\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]$	B1	1	
(a)(ii)	$\left[\begin{array}{ll} 1 & 0 \\ 0 & 7 \end{array}\right]$	B1	1	
(b)	$\left[\begin{array}{ll} 1 & 0 \\ 0 & 7 \end{array}\right]\left[\begin{array}{cc} 0 & -1 \\ -1 & 0 \end{array}\right]=\left[\begin{array}{cc} 0 & -1 \\ -7 & 0 \end{array}\right]$	M1 A1	2	Multiplication of c's matrices from (a)(i) and (a)(ii) in correct order. CAO
(c)(i)	$\begin{aligned} \mathbf{A}^{2} & =\left[\begin{array}{cc} 9+3 & 3 \sqrt{3}-3 \sqrt{3} \\ 3 \sqrt{3}-3 \sqrt{3} & 3+9 \end{array}\right]=\left[\begin{array}{cc} 12 & 0 \\ 0 & 12 \end{array}\right] \\ & =12\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right]=12 \mathbf{I} \end{aligned}$	B1	1	Accept either of these two final forms.
(c)(ii)	$\begin{aligned} \mathbf{A} & =\sqrt{12}\left[\begin{array}{cc} -\frac{3}{\sqrt{12}} & -\frac{\sqrt{3}}{\sqrt{12}} \\ -\frac{\sqrt{3}}{\sqrt{12}} & \frac{3}{\sqrt{12}} \end{array}\right] \\ & =\left[\begin{array}{cc} \sqrt{12} & 0 \\ 0 & \sqrt{12} \end{array}\right]\left[\begin{array}{cc} \cos 210^{\circ} & \sin 210^{\circ} \\ \sin 210^{\circ} & -\cos 210^{\circ} \end{array}\right] \end{aligned}$ Scale factor of enlargement $=\sqrt{12}(=2 \sqrt{3})$ (line of reflection) $y=\tan 105^{\circ} x$ Combination of enlargement sf $\sqrt{12}$ and reflection in line $y=\tan 105^{\circ} x$ Altn for M1A1 in (c)(ii) $\begin{aligned} & {\left[\begin{array}{cc} -3 & -\sqrt{3} \\ -\sqrt{3} & 3 \end{array}\right]\left[\begin{array}{llll} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{array}\right]=} \\ & =\left[\begin{array}{llll} 0 & -3 & -\sqrt{3} & -3 \\ 0 & -\sqrt{3} & 3 & -\sqrt{3}+3 \end{array}\right] \end{aligned}$	M1		$\text { OE eg }-2 \sqrt{3}\left[\begin{array}{cc} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{\sqrt{3}}{2} \end{array}\right]$
		A1		Either order. OE
		$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$		OE. If not $\sqrt{12} \mathrm{OE}$, ft on \sqrt{k} from (c)(i). OE in form $y=(\tan \theta) x$ ACF
		A1	5	OE CSO Need correct combination of sf and eqn and also convincingly shown that the matrix corresponds to a combination of an enlargement and reflection
		(M1)		Attempting to find the image of vertices of a square under \mathbf{A} with at least two nonorigin images obtained and correct.
		(A1)		Correct image of square under A (seen or used) with evidence of either correct length of side of the square or correct angle between a side and an axis.
	Total		10	
(c)(ii)	Other correct alternatives' include eg Enlargement sf $-\sqrt{12}$, reflection in $y=\tan 15^{\circ} x$ Other acceptable answers for final B mark above include $y=\left(\tan \frac{7 \pi}{12}\right) x$; Condone eg $y=-\tan 75^{\circ} x, \quad y=-\left(\tan \frac{5 \pi}{12}\right) x ;$ Apply ISW after a correct form is given			

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Mark \& Total \& Comment \\
\hline \multirow[t]{4}{*}{8(a)} \& \[
\cos \left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}
\] \& B1 \& \& \begin{tabular}{l}
\(\cos \left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\) OE stated or used. \\
B0 if any incorrect angle also used. Condone degrees or decs (3sf or better)
\end{tabular} \\
\hline \& \[
\frac{5}{4} x-\frac{\pi}{3}=2 n \pi+" \frac{\pi}{4} " ; \frac{5}{4} x-\frac{\pi}{3}=2 n \pi-" \frac{\pi}{4} "
\] \& M1 \& \& OE; Either one, showing a correct use of \(2 n \pi\) in forming a general soln. ft c's \(\cos ^{-1}(\sqrt{ } 2 / 2)\). Condone \(360 n\) in place of \(2 n \pi\) \\
\hline \& \[
x=\frac{4}{5}\left(2 n \pi+\frac{\pi}{4}+\frac{\pi}{3}\right), x=\frac{4}{5}\left(2 n \pi-\frac{\pi}{4}+\frac{\pi}{3}\right)
\] \& m1 \& \& \begin{tabular}{l}
Correct rearrangement of
\[
\frac{5}{4} x-\frac{\pi}{3}=2 n \pi+\alpha \text { OE to } x=\ldots \ldots \ldots
\] \\
where an \(\alpha\) is from c's \(\cos \alpha=\sqrt{ } 2 / 2\). Condone \(360 n\) in place of \(2 n \pi\)
\end{tabular} \\
\hline \& \[
x=\frac{24 n \pi+7 \pi}{15}, \quad x=\frac{24 n \pi+\pi}{15}
\] \& A2,1,0 \& 5 \& OE full set of correct solutions in radians in terms of \(\pi\) written in a simplified form. (A1 if correct but left unsimplified). Accept the simplification retrospectively if it appears in (b) \\
\hline \multirow[t]{3}{*}{(b)} \& For both \(\frac{24 n \pi+7 \pi}{15}\) and \(\frac{24 n \pi+\pi}{15}\), solns. in \(0 \leq x \leq 20 \pi\) come from \(n=0\) to \(n=12\) inclusive. \& B1F \& \& Values for \(n\), stated or used, ft on c's general solution \\
\hline \& \[
\begin{aligned}
\& \text { Sum }=\sum_{n=0}^{12}\left[\frac{24 n \pi+7 \pi}{15}\right]+\sum_{n=0}^{12}\left[\frac{24 n \pi+\pi}{15}\right] \\
\& =\frac{24 \pi}{15} \frac{12}{2}(13)+\frac{7 \pi}{15}(13)+\frac{24 \pi}{15} \frac{12}{2}(13)+\frac{13 \pi}{15} \\
\& \left\{=\frac{\pi}{15}(1872+91+1872+13)\right\} \\
\& \left.\quad=\frac{3848}{15} \pi \quad \text { (ie } k=\frac{3848}{15}\right)
\end{aligned}
\] \& M1,A1

A1 \& 4 \& | Method for summing; must be using correct general solution. PI by correct value of k. |
| :--- |
| OE exact value eg $256 \frac{8}{15} \pi$ |

\hline \& Total \& \& 9 \&

\hline (a) \& \multicolumn{4}{|l|}{\multirow[t]{4}{*}{| Form of the answer in m 1 line of soln above would score A1. If it had been simplified to $x=\frac{4}{5}\left(2 n \pi+\frac{7 \pi}{12}\right), x=\frac{4}{5}\left(2 n \pi+\frac{\pi}{12}\right)$ it would have scored A2 |
| :--- |
| Simplification requires terms of the form $a \pi+b \pi$, where a and b are numerical fractions to be combined. |
| Full correct answer might eg be written as $x=\frac{24 n \pi+7 \pi}{15}, x=\frac{24 n \pi+25 \pi}{15}$ |
| in which case for $\frac{24 n \pi+25 \pi}{15}$ solns in $0 \leq x \leq 20 \pi$ would come from $n=-1$ to $n=11$ inclusive. |
| Identifying and listing all relevant solns.: (B1F as above); At least 24 of the 26 correct solns (M1 PI) $\frac{3848}{15} \pi(\mathrm{OE} \mathrm{A} 2)$. If not A2 award A1 for both $\frac{1963}{15} \pi$ and $\frac{377}{3} \pi$ seen. |}}

\hline (a) \& \& \& \&

\hline (a)(b) \& \& \& \&

\hline (b) \& \& \& \&

\hline
\end{tabular}

Q	Solution	Mark	Total	Comment
9(a)	${ }^{4}{ }_{3}$	B1		Ellipse, 'centre' origin with correct values for at least two intercepts.
		B1	2	Correct values shown for the four intercepts
(b)	$\begin{aligned} & \frac{x^{2}}{16}+\frac{(x+k)^{2}}{9}=1 \\ & 9 x^{2}+16(x+k)^{2}=16(9) \end{aligned}$	M1		Replacing y by $(x+k)$ or by ($x-k$) OE
	$25 x^{2}+32 k x+16 k^{2}-144=0$	A1		A correct quadratic equation in the form $A x^{2}+B x+C=0$, PI by later work.
	$B^{2}-4 A C=(32 k)^{2}-4(25)\left(16 k^{2}-144\right)$	M1		$B^{2}-4 A C$ in terms of k; ft on c 's quadratic provided B and C are both in terms of k
	Roots real and different $\Rightarrow B^{2}-4 A C>0$ $\Rightarrow(32 k)^{2}-4(25)\left(16 k^{2}-144\right)>0$	A1		A correct strict inequality where k is the only unknown
	$\begin{aligned} & 16 k^{2}-25 k^{2}+25(9)>0 ; 9 k^{2}<25(9) \\ & k^{2}<25 ;-5<k<5 \end{aligned}$	A1	5	CSO AG
(c)	$\frac{(x-a)^{2}}{16}+\frac{(y-b)^{2}}{9}=1$	M1		$x \rightarrow x \pm a$ and $y \rightarrow y \pm b$
	$\begin{aligned} & 9\left(x^{2}-2 a x+a^{2}\right)+16\left(y^{2}-2 b y+b^{2}\right)=144 \\ & -18 a=18 ;-32 b=-64 ; \quad 144-9 a^{2}-16 b^{2}=c \end{aligned}$	$\begin{aligned} & \text { A1 } \\ & \text { m1 } \end{aligned}$		Comparing non-zero coeffs to form three
	$a=-1, b=2, c=144-9-64=71$	B2,1,0	5	equations. PI B1 for two correct values.
	$\begin{aligned} & \text { Altn: } 9 x^{2}+16 y^{2}+18 x-64 y=c \\ & 9\left(x^{2}+2 x\right)+16\left(y^{2}-4 y\right)=c \end{aligned}$			
	$9(x+1)^{2}+16(y-2)^{2}=c+9+64$	(M1)		(Completing the square)
	$\frac{(x+1)^{2}}{16}+\frac{(y-2)^{2}}{9}=\frac{c+9+64}{144}$	(m1)		$\frac{(x+1)^{2}}{16}+\frac{(y-2)^{2}}{9}=\frac{c+\lambda}{144}$
	$a=-1, b=2, c=144-9-64=71$	(B2,1,0)	(5)	(B1 for two correct values.)
(d)	Equations of tangents to E that are parallel to $y=x$ are $y=x+5$ and $y=x-5$	B1		Need both equations. PI by M1 line
	Tangents to translated ellipse that are parallel to $y=x$ are $\begin{aligned} & y-b=x-a+5 \text { and } y-b=x-a-5 \\ & y=x+8 \text { and } y=x-2 \end{aligned}$	M1	3	Since 'Hence', NMS scores 0/3
	Total		15	
	TOTAL		75	
	Condone correct coordinates in place of 'int	ercepts'.		

[^0]: Set and published by the Assessment and Qualifications Alliance.

[^1]: Set and published by the Assessment and Qualifications Alliance.

[^2]: The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334)
 Registered address: AQA, Devas Street, Manchester M15 6EX Registered address: AQA, Devas Street, Manchester M15 6EX

[^3]: The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334)
 Registered address: AQA, Devas Street, Manchester M15 6EX Registered address: AQA, Devas Street, Manchester M15 6EX

[^4]: Set and published by the Assessment and Qualifications Alliance.

[^5]: Further copies of this Mark Scheme are available from: aqa.org.uk

[^6]: Further copies of this Mark Scheme are available from: aqa.org.uk

